Open Access
MATEC Web Conf.
Volume 246, 2018
2018 International Symposium on Water System Operations (ISWSO 2018)
Article Number 01023
Number of page(s) 7
Section Main Session: Water System Operations
Published online 07 December 2018
  1. Wang, Lizhong, and L. Fangb. “Basin-wide cooperative water resources allocation.” European Journal of Operational Research 190.3(2008):798-817. [CrossRef] [Google Scholar]
  2. Li, Y. P., et al. “A multistage fuzzy-stochastic programming model for supporting sustainable water-resources allocation and management.” Environmental Modelling & Software 24.7(2009):786-797. [CrossRef] [Google Scholar]
  3. Wang H, Wang J H, Qing D Y. Research advances and direction on the theory and practice of reasonable water resources allocation[J]. Advances in Water Science, 2004, 15(1):123-128. [Google Scholar]
  4. Wang L Z, Fang L, Hipel K W. Water resources allocation: A cooperative game theoretic approach[J]. Journal of Environmental Informatics, 2003, 2(2):11-22. [CrossRef] [Google Scholar]
  5. Z. F. Yang, T. Sun, B. S. Cui, et al. Environmental flow requirements for integrated water resources allocation in the Yellow River Basin, China. Commun Nonlinear Sci Numer Simul, 14(5): 2469-2481[J]. [Google Scholar]
  6. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(5):2469-2481. [Google Scholar]
  7. Han Y, Huang Y F, Wang G Q, et al. A Multiobjective Linear Programming Model with Interval Parameters for Water Resources Allocation in Dalian City[J]. Water Resources Management, 2011, 25(2):449-463. [CrossRef] [Google Scholar]
  8. Windsor, James S. “Optimization model for the operation of flood control systems.” Water Resources Research 9.5(1973):1219-1226. [CrossRef] [Google Scholar]
  9. Gregory J. Carbone, and Kirstin Dow. “WATER RESOURCE MANAGEMENT AND DROUGHT FORECASTS IN SOUTH CAROLINA.” JAWRA Journal of the American Water Resources Association 41.1(2010):145-155. [CrossRef] [Google Scholar]
  10. Pahlwostl, Claudia, et al. “Social Learning and Water Resources Management.” Ecology & Society 12.2(2007):1-19. [Google Scholar]
  11. Middelkoop, H., et al. “Impact of Climate Change on Hydrological Regimes and Water Resources Management in the Rhine Basin.” Climatic Change 49.1-2(2001):105-128. [CrossRef] [Google Scholar]
  12. Y.P. Li, G.H. Huang, and S.L. Nie. “An intervalparameter multi-stage stochastic programming model for water resources management under uncertainty.” Advances in Water Resources 29.5(2006):776-789. [Google Scholar]
  13. Jain S K, Singh V P. Reservoir Operation[J]. Developments in Water Science, 2003, 51:615-679. [CrossRef] [Google Scholar]
  14. Neelakantan T R, Pundarikanthan N V. Neural Network-Based Simulation-Optimization Model for Reservoir Operation[J]. Journal of Water Resources Planning & Management, 2000, 126(2):57-64. [CrossRef] [Google Scholar]
  15. Shrestha B P, Duckstein L, Stakhiv E Z. Fuzzy Rule-Based Modeling of Reservoir Operation[J]. Journal of Water Resources Planning & Management, 1996, 122(4):262-269. [CrossRef] [Google Scholar]
  16. Jager H I, Smith B T. Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values?[J]. River Research & Applications, 2008, 24(3):340-352. [Google Scholar]
  17. Chang L, Chang F J. Intelligent control for modeling of real time reservoir operation. Hydrol Process[J]. Hydrological Processes, 2001, 15(9):1621-1634. [CrossRef] [Google Scholar]
  18. Zhao T, Cai X, Yang D. Effect of streamflow forecast uncertainty on real-time reservoir operation[J]. Advances in Water Resources, 2011, 34(4):495-504. [CrossRef] [Google Scholar]
  19. Smith B T, Jager Y, March P. Sustainable reservoir operation[J]. 2007. [Google Scholar]
  20. Biswas A K. Integrated Water Resources Management: A Reassessment[J]. Water International, 2004, 29(2):248-256. [CrossRef] [Google Scholar]
  21. Seckler D, Seckler D. The new era of water resources management: from “dry” to “wet” water[J]. General Information, 1996, 1. [Google Scholar]
  22. Petts G E. WATER ALLOCATION TO PROTECT RIVER ECOSYSTEMS[J]. Regulated Rivers Research & Management, 1996, 12(4-5):353-365. [CrossRef] [Google Scholar]
  23. Reca J, Roldán J, Alcaide M, et al. Optimisation model for water allocation in deficit irrigation systems: I. Description of the model[J]. Agricultural Water Management, 2001, 48(2):103-116. [CrossRef] [Google Scholar]
  24. ZHAO Yong; PEI Yuansheng; YU Fuliang. Realtime dispatch system for Heihe River basin water resources[J]. Journal of Hydraulic Engineering, 2006, 37: 82-88,96. [Google Scholar]
  25. Green G P, Hamilton J R, Gopalakrishnan C, et al. Water allocation, transfers and conservation: links between policy and hydrology[J]. International Journal of Water Resources Development, 2000, volume 16(16):197-208. [CrossRef] [Google Scholar]
  26. Yong Z, Pei Y S, Fu-Liang Y U. Real-time dispatch system for Heihe River basin water resources[J]. Journal of Hydraulic Engineering, 2006, 37(1):82-74. [Google Scholar]
  27. LETTLE J D C. The use of storage water in a hydroelectric system[J]. Operational Research, 1955(3): 187-197. [Google Scholar]
  28. UNDER O I, MAYS L W. Model for real-time optimal flood control operation of a reservoir system[J]. Water Resource Management, 1990(4): 24-45. [Google Scholar]
  29. BECKOR G L. Multi-objective analysis of mutireservoir operations[J]. Water Resources Research, 1982, 18(5): 1326-1336. [CrossRef] [Google Scholar]
  30. MOHAN S, RAIPURE D M. Multi-objective analysis of multi-reservoir system[J]. Water Resources Plan Management, 1992, 9(5): 356-370. [CrossRef] [Google Scholar]
  31. Cheng C T, Wang W C, Xu D M, et al. Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos[J]. Water Resources Management, 2008, 22(7):895-909. [CrossRef] [Google Scholar]
  32. Castelletti A, Galelli S, Restelli M, et al. Treebased reinforcement learning for optimal water reservoir operation[J]. Water Resources Research, 2010, 46(9):4921-4921. [Google Scholar]
  33. Reddy M J, Nagesh Kumar D. Multi‐objective particle swarm optimization for generating optimal trade‐offs in reservoir operation[J]. Hydrological Processes, 2010, 21(21):2897-2909. [CrossRef] [Google Scholar]
  34. Simonovi S P, Venemaa H D, Burna D H. Riskbased parameter selection for short-term reservoir operation[J]. Journal of Hydrology, 1992, 131(1-4):269-291. [CrossRef] [Google Scholar]
  35. HALL W A, SHEPHARD R W. Optimum operation for planning of a complex water resources system[C]//Technology rep: Water resources cent school of engineering and applied science. San Francisco: University of California, 1967. [Google Scholar]
  36. JS Windsor. Optimization model for reservoir flood control[J]. Water Resources Research, 1973, 9(5): 1103-1114. [Google Scholar]
  37. Wang Juegen. A brief introduction of the optimal flood control operation model for the Danjiangkou Rservoir[J]. Water Resources and Hydropower Engineering. 1985(8): 54-58. [Google Scholar]
  38. Xu Zida. The introduction of a convenient method for optimal reservoir operation of flood control[J]. Yellow River. 1990(1): 26-30. [Google Scholar]
  39. Du Jinkang, Li Han, Wang Lachun, Yan Suning. A Linear Prigramming for Optimal Operation for Multireservoir Flood Control System[J]. Journal of Nanjing University (Natrual Sciences Edition). 1995, 32(2): 301-309. [Google Scholar]
  40. Yu Cuisong. Reserch on Flood Operation in Basins[D]. Jinan: The Shandong University of Technology, 2000. [Google Scholar]
  41. LITTLE J D C. The use of storage water in a hydroelectric system[J]. Operational Research, 1955 (3): 187-197. [Google Scholar]
  42. Howard R A. Dynamic Programming and Markov Process[J]. Mathematical Gazette, 1960, 3(358):120. [Google Scholar]
  43. TURGEON A. Optimal short-term hydro scheduling from the principle of progressive optimality[J]. Water Resources Research, 1981, 17(3): 481-486. [CrossRef] [Google Scholar]
  44. Fu X, Li A Q, Wang H. Allocation of Flood Control Capacity for a Multireservoir System Located at the Yangtze River Basin[J]. Water Resources Management, 2014, 28(13):4823-4834. [CrossRef] [Google Scholar]
  45. Kumar D N, Baliarsingh F, Raju K S. Optimal reservoir operation for flood control using folded dynamic programming.[J]. Water Resources Management, 2010, 24(6):1045-1064. [CrossRef] [Google Scholar]
  46. Li Wenji, Xu Zida. Study on the optimal flood operation model considering Sanmenxia, Luhun and Guxian reservoirs for the lower reaches of the Yellow River[J]. Yellow River, 1990(4): 21-25. [Google Scholar]
  47. Mei Y, Feng S. Application of Network Flow Programming to Long-Term Optimal Operation of Multireservoir Systems[J]. Journal of Wuhan University of Hydraulic & Electric Engineering, 1989(5):1231-1243. [Google Scholar]
  48. Xia Q, Xiang N D, Wang S Y, et al. A new algorithm for nonlinear minimum cost network flow and its application.[J]. Journal of Tsinghua University, 1987(4):1-10. [Google Scholar]
  49. Jia B, Zhong P, Wan X, et al. Decomposition– coordination model of reservoir group and flood storage basin for real-time flood control operation[J]. Hydrology Research, 2015, 46(1):11. [CrossRef] [Google Scholar]
  50. Wang D Z, Dong Z C, Ding S X. Research on aggregation-decomposition-coordination model of feeding reservoir group[J]. Journal of Hohai University, 2006, 34(6):622-626. [Google Scholar]
  51. Li Ailing. A Study on the Large-scale System Decomposition—Coordination Method Used in Optimal Operation of a Hydroelectric System[J]. International Journal Hydroelectric Energy, 2004, 29(2):228-231. [Google Scholar]
  52. LI Gui-xiang, WANG Ting, WEN Jin-hua. The Study on Decomposition and Coordination Model of Large-scale System in Optimal Allocation of Water Resources[J]. Computer Knowledge & Technology, 2010. [Google Scholar]
  53. Huang W, Yuan L, Lee C. Linking genetic algorithms with stochastic dynamic programming to the long-term operation of a multireservoir system. Water Resour Res 38 (12):1304[J]. [Google Scholar]
  54. Water Resources Research, 2002, 38(12):40-1-40-9. [Google Scholar]
  55. Xue X J, Gao F, Wang H. Analysis on the Extension of Reservoir Compensation Benefits Based on Game Theory[J]. Arid Zone Research, 2010, 27(5):669-674. [Google Scholar]
  56. Ahmadi M A, Ebadi M, Shokrollahi A, et al. Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir[J]. Applied Soft Computing, 2013, 13(2):1085-1098. [Google Scholar]
  57. Afshar A, Madadgar S. Ant Colony Optimization for Continuous Domains: Application to Reservoir Operation Problems[C]// Eighth International Conference on Hybrid Intelligent Systems. IEEE, 2008:13-18. [CrossRef] [Google Scholar]
  58. Kumar D N, Reddy M J. Multipurpose Reservoir Operation Using Particle Swarm Optimization[J]. Journal of Water Resources Planning & Management, 2007, 2006(3):192-201. [CrossRef] [Google Scholar]
  59. Hashemi M S, Barani G A, Ebrahimi H. Optimization of Reservoir Operation by Genetic Algorithm Considering Inflow Probabilities (Case Study: The Jiroft Dam Reservoir)[J]. Journal of Applied Sciences, 2008, 8(11):2173-2177. [CrossRef] [Google Scholar]
  60. Bosch P, Jofré A, Schultz R. Two-Stage Stochastic Programs with Mixed Probabilities[J]. Siam Journal on Optimization, 2007, 18(3):778-788. [CrossRef] [Google Scholar]
  61. G. H. HUANG, D. P. LOUCKS. AN INEXACT TWO-STAGE STOCHASTIC PROGRAMMING MODEL FOR WATER RESOURCES MANAGEMENT UNDER UNCERTAINTY[J]. Civil Engineering & Environmental Systems, 2000, 17(2):95-118. [CrossRef] [Google Scholar]
  62. H. W. Lu, G. H. Huang, L. He. A semi-infinite analysis-based inexact two-stage stochastic fuzzy linear programming approach for water resources management[J]. Engineering Optimization, 2009, 41(1):73-85. [CrossRef] [Google Scholar]
  63. Zhang Jing, Huang Guohe, Liu Ye, etc. Dispatch model for conbined water supply of multiple sources under the conditions of uncertianty[J]. Journal of Hydraulic Engineering, 2009, 40(2): 11-14. [Google Scholar]
  64. Liu Zhonghua, Yu Hua, Yang Fangyan, etc. Study on water resources allocation in Shanxi in conditions of uncertainty[J]. Journal of Hydroelectric Engineering, 2016(3): 36-46. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.