Open Access
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
Article Number 06029
Number of page(s) 6
Section Information & Communication Technology (ICT), Science (SCI) & Mathematics (SM)
Published online 23 February 2018
  1. S. E. Umbaugh, Digital image processing and analysis: human and computer vision applications with CVIPtools, Second Edi. CRC Press, 2010. [Google Scholar]
  2. L. Mulrane, E. Rexhepaj, S. Penney, J. J. Callanan, and W. M. Gallagher, “Automated image analysis in histopathology: a valuable tool in medical diagnostics”, Expert Rev. Mol. Diagn., vol. 8, no. 6, pp. 707–725, Nov. 2008. [CrossRef] [Google Scholar]
  3. H. Zhou, H. Kong, L. Wei, D. Creighton, and S. Nahavandi, “On Detecting Road Regions in a Single UAV Image”, IEEE Trans. Intell. Transp. Syst., vol. 18, no. 7, pp. 1713–1722, 2016. [CrossRef] [Google Scholar]
  4. M. A. M. Abdullah, S. S. Dlay, W. L. Woo, and J. A. Chambers, “Robust Iris Segmentation Method Based on a New Active Contour Force With a Noncircular Normalization” IEEE Trans. Syst. Man, Cybern. Syst., pp. 1–-14, 2016. [Google Scholar]
  5. [5]P. Smith, D. B. Reid, C. Environment, L. Palo, P. Alto, and P. L. Smith, “Otsu1975,” vol. 20, no. 1, pp. 62–66, 1979. [Google Scholar]
  6. A. Lucieer, D. Turner, D. H. King, and S. A. Robinson, “Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds”, Int. J. Appl. Earth Obs. Geoinf., vol. 27, pp. 53–62, Apr. 2014. [CrossRef] [Google Scholar]
  7. T. Y. Lim and M. M. Ratnam, “Edge detection and measurement of nose radii of cutting tool inserts from scanned 2-D images”, Opt. Lasers Eng., vol. 50, no. 11, pp. 1628–1642, Nov. 2012. [CrossRef] [Google Scholar]
  8. J. Huang, X. You, Y. Y. Tang, L. Du, and Y. Yuan, “A novel iris segmentation using radial-suppression edge detection”, Signal Processing, vol. 89, no. 12, pp. 2630–2643, 2009. [CrossRef] [Google Scholar]
  9. S. a. Coleman, B. W. Scotney, and S. Suganthan, “Multi-scale edge detection on range and intensity images”, Pattern Recognit., vol. 44, no. 4, pp. 821–838, Apr. 2011. [CrossRef] [Google Scholar]
  10. W. H. W. He and K. Y. K. Yuan, An improved Canny edge detector and its realization on FPGA. Ieee, 2008, pp. 6561–6564. [Google Scholar]
  11. S. B. Kutty, S. Saaidin, P. N. A. Megat Yunus, and S. Abu Hassan, “Evaluation of canny and sobel operator for logo edge detection”, ISTMET 2014 - 1st Int. Symp. Technol. Manag. Emerg. Technol. Proc., vol. 2, no. Istmet, pp. 153–156, 2014. [CrossRef] [Google Scholar]
  12. Z. Othman, A. Abdullah, and A. S. Prabuwono, “A statistical Approach of Multiple Resolution Levels for Canny Edge Detection”, in Intelligent Systems Design and Applications (ISDA), 2012, 2012, pp. 837–841. [CrossRef] [Google Scholar]
  13. Z. Othman and A. Abdullah, “An Adaptive Threshold Based On Multiple Resolution Levels for Canny Edge Detection”, in IRICT 2017: Recent Trends in Information and Communication Technology, 2017, pp. 316–323. [Google Scholar]
  14. W. Gao, L. Yang, X. Zhang, and H. Liu, “An improved Sobel edge detection”, Proc. - 2010 3rd IEEE Int. Conf. Comput. Sci. Inf. Technol. ICCSIT 2010, vol. 5, pp. 67–71, 2010. [Google Scholar]
  15. J. Canny, “A computational approach to edge detection.”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–98, Jun. 1986. [CrossRef] [Google Scholar]
  16. B. Wang and S. Fan, “An improved CANNY edge detection algorithm Bing”, 2009 Second Int. Work. Comput. Sci. Eng., 2009. [Google Scholar]
  17. G. Jie and L. Ning, “An Improved Adaptive Threshold Canny Edge Detection Algorithm”, 2012 Int. Conf. Comput. Sci. Electron. Eng., pp. 164–168, Mar. 2012. [CrossRef] [Google Scholar]
  18. Nasruddin Abu Sari, Asmala Ahmad, MY Abu Sari, S Sahib, AW Rasib (2015) Development Of Rapid Low-Cost LARS Platform For Oil Palm Plantation. Jurnal Teknologi, 77 (20), 99 – 105 (Scopus). EISSN 2180-3722. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.