Issue |
MATEC Web of Conferences
Volume 150, 2018
Malaysia Technical Universities Conference on Engineering and Technology (MUCET 2017)
|
|
---|---|---|
Article Number | 06029 | |
Number of page(s) | 6 | |
Section | Information & Communication Technology (ICT), Science (SCI) & Mathematics (SM) | |
DOI | https://doi.org/10.1051/matecconf/201815006029 | |
Published online | 23 February 2018 |
Comparison between Edge Detection Methods on UTeM Unmanned Arial Vehicles Images
Department of Intelligent Computing and Analytics, Faculty of Information & Communication Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia.
* Corresponding author: zuraini@utem.edu.my
Machine vision calls for the use of detectors to ascertain the features and type of object portrayed in the image. The employment of unmanned aerial vehicles (UAVs), which can function freely in active and precarious settings, is currently gaining momentum. These vehicles are mainly used for the detecting, classifying and tracking of an object. However, the achievement of these objectives necessitates the involvement of an effective edge detection procedure. Sobel, Canny, Prewitt and LoG are among the many edge detection procedures presently available. In this endeavour, we opted for the utilization of UTeM UAVs images for an evaluation of these edge detection procedures. During our investigations, the ground truth edge images were corroborated by a specialist in this field. The results obtained from these investigations revealed that in terms of accuracy, precision, sensitivity and f-measure, the Prewitt procedure outperforms the other methods mentioned.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.