Open Access
Issue
MATEC Web Conf.
Volume 147, 2018
The Third International Conference on Sustainable Infrastructure and Built Environment (SIBE 2017)
Article Number 04004
Number of page(s) 7
Section Water and Waste Engineering and Management
DOI https://doi.org/10.1051/matecconf/201814704004
Published online 22 January 2018
  1. Ichinari. T., Ohtsubo. A., Ozawa. T., Hasegawa. K., Teduka. K., Oguchi. T. and Kiso. Y., Wastewater treatment performance and sludge reduction properties of a household wastewater treatment system combined with an aerobic sludge digestion unit, Process Biochem, 43, pp. 722-728, (2008). [CrossRef] [Google Scholar]
  2. JECES, Japan Education Center of Environmental Sanitation, (2009). [Google Scholar]
  3. Ormori. D., Nitrogen and Phosphorous Removal Technology in Johkasou System, Proceeding of Johkasou Session, Kyoto, Japan, (2003). [Google Scholar]
  4. Yang. X.M., Morita.A., Nakano, I., Kushida. Y. and Ogawa., H., History and current situation of night soil treatment systems and decentralized wastewater treatment system in Japan. Water Prac. Technol. 5(4), (2010). [Google Scholar]
  5. Fajri. J.A., Yamada. T., Setiyawan.A.S. and Fusheng. L., Evaluation of water and sediment quality in open channels that received effluent from Johkasou facility, J Water Environ Technol, 13(3), pp. 2017-208, (2015). [CrossRef] [Google Scholar]
  6. Matsuo. T., Japanese experienced in water pollution control and wastewater treatment technologies, Water Sci. Technol, 42 (12), pp. 163-172, (2000). [CrossRef] [Google Scholar]
  7. Vandith. V., Setiyawan. A.S. and Soewondo. P., Kinetics of organic removal in Johkasou as an-onsite domestic wastewater treatment system, The Fourth Joint Seminar of Japan and Indonesia: Environmental Sustainability and Disaster Prevention (ESDP), Bandung, Indonesia, (2016). [Google Scholar]
  8. Reeves. E. G., Kinetic Analysis of Kluyvermyces Maximum Yeast Strain Louisiana, (2004). [Google Scholar]
  9. Jin. R. and Zheng. P., Kinetic of nitrogen removal in high rate anammox upflow filter, Hazard. Mater, 170 (2), pp. 652-656, (2009). [CrossRef] [Google Scholar]
  10. Grau. P., Dohanyas. M. and Chudoba. J., Kinetic of multicomponent substrate removal by activated sludge, Water res, 9, pp. 637-642, (1975). [CrossRef] [Google Scholar]
  11. Yu. H., Wilson. F. and Tay. J., Kinetics analysis of an anaerobic filter treating soybean wastewater, Water Res, 32(11), pp. 3341-3352, (1998). [CrossRef] [Google Scholar]
  12. Akhbari. A., Zinatizadeh. A. L., Mohammadi. P., Mansouri. Y., Irandoust. M. and Isa. M. H., Kinetic modeling of carbon and nutrients removal in integrated rotating biological contactor-activated sludge system, Int.J.Environ. Sci. Technol, 9, pp. 371-378, 2012. [CrossRef] [Google Scholar]
  13. Mansouri. A. M., Zinatizadeh. A. L. and Akabari. A., Kinetic Evaluation of Simultaneous CNP Removal in an up-Flow Aerobic/Anoxic Sludge Fixed Film (UAASFF) Bioreactor, IJEE, 5(3), pp. 323-336, (2014). [CrossRef] [Google Scholar]
  14. Isik. R. and Sponza. T., Substrate removal kinetics in an upflow anaerobic sludge blanket reactor decolorizing simulated textile wastewater, Process Biochem, 40, pp. 1189-1198, (2005). [CrossRef] [Google Scholar]
  15. Kimleng. T. and Effendi. A. J., COD removal kinetics and microorganisms growth kinetics using lab-scale batch condition for toilet wastewater treatment in modified septic tank using plastic media, Master thesis, Bandung, Indonesia, (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.