Issue |
MATEC Web Conf.
Volume 147, 2018
The Third International Conference on Sustainable Infrastructure and Built Environment (SIBE 2017)
|
|
---|---|---|
Article Number | 04004 | |
Number of page(s) | 7 | |
Section | Water and Waste Engineering and Management | |
DOI | https://doi.org/10.1051/matecconf/201814704004 | |
Published online | 22 January 2018 |
Kinetics of nutrient removal in an on-site domestic wastewater treatment facility
Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, JL Ganesha 10 Bandung 40132, Indonesia
* Corresponding author: vandith_va@yahoo.com
Domestic wastewater from office building has not been maintained well especially in the areas where the sewerage system is unavailable. The aims of this research were to investigate the performance and kinetics of nutrient removal in an on-site domestic wastewater treatment facility which consists of anaerobic and aerobic systems for treating wastewater from office building. The experimental data obtained from the variations of COD:N:P ratio 250:28:2.5, 350:38:2.9, 450:47:3.3, and 600:60:3.7 with three different HRT 48h, 24h, and 12h. A One-way ANOVA was performed to investigate the effects of HRT and initial concentration of TN and TP on the performance of nutrient removal. In order to obtain the kinetic coefficients, First Order, Second Order and Stover-Kincannon Models were employed. The results showed that maximum TN and TP removal efficiency were 56% and 86%, respectively. The results of one-way ANOVA showed that HRT and initial concentration of TN and TP gave the significant effects on nutrient removal (p < 0.05). Second Order and Stover-Kincannon Models were found to be more appropriate models for prediction of TN removal in this facility. Controlling HRT and C: N: P ratio may keep good performance of nutrient removal in this facility.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.