Open Access
Issue
MATEC Web Conf.
Volume 144, 2018
International Conference on Research in Mechanical Engineering Sciences (RiMES 2017)
Article Number 03002
Number of page(s) 13
Section Manufacturing Engineering
DOI https://doi.org/10.1051/matecconf/201814403002
Published online 09 January 2018
  1. N. Chawla, K. K. Chawla, Metal Matrix Composites, (Springer, 2006). [Google Scholar]
  2. M. Haghshenas, Metal–Matrix Composites, In Reference Module in Materials Science and Materials Engineering, (Elsevier, 2016). [Google Scholar]
  3. M.B.D. Ellis, Joining of aluminium based metal matrix composites, Int. Mater. Rev., 41(2), 41–58, (1996). [CrossRef] [Google Scholar]
  4. Pal, T. K., Joining of aluminium metal matrix composites, Mater. Manuf. Process., 20, 717–726, (2005). [CrossRef] [Google Scholar]
  5. D. Storjohann, O. M. Barabash, S. S. Babu, S. A. David, P. S. Sklad, E. E. Bloom, Fusion and friction stir welding of aluminum metal–matrix composites, Metall. Mater. Trans. A, 36A, 3237–3247, (2005). [CrossRef] [Google Scholar]
  6. K. Peng, H. C. Cui, F. G. Lu, X. M. Wu, X. H. Tang, S. Yao, S. N. Lou, Mechanical properties and wear resistance of aluminum composites welded by electron beam, Trans. Nonferrous Metals Soc. China, 21, 1925–1931, (2011). [CrossRef] [Google Scholar]
  7. J. Niu, L. Pan, M.Wang, C. Fu, X. Meng, Research on laser welding of aluminium matrix composite SiCw/6061, Vacuum, 80, 1396–1399, (2006). [CrossRef] [Google Scholar]
  8. W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Temple-Smith, and C. Dawes, Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, GB Patent No. 9125978.8, 1991, U.S. Patent No. 5,460,317, 1995. (1991). [Google Scholar]
  9. P. L. Threadgill, A. J. Leonard, H. R. Shercliff, P. J. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev., 54(2), 49–93, (2009). [CrossRef] [Google Scholar]
  10. G. Cam, Friction stir welded structural materials: beyond Al-alloys, Int. Mater. Rev., 56(1), 1–47, (2011). [CrossRef] [Google Scholar]
  11. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction stir welding - process, weldment structure and properties, Prog. Mater. Sci., 53, 980–1023, (2008). [CrossRef] [Google Scholar]
  12. R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater Sci Eng R, 50, 1–78, (2005). [CrossRef] [Google Scholar]
  13. W. M. Thomas, D. G. Staines, I. M. Norris, R. de Frias, Friction stir welding tools and developments, Weld. World, 47, 10–17, (2013). [CrossRef] [Google Scholar]
  14. Y. N. Zhang, X. Cao, S. Larose, P.Wanjara, Review of tools for friction stir welding and processing, Can. Metall. Q., 51(3), 250–261, (2012). [CrossRef] [Google Scholar]
  15. D. Wang, B. L. Xiao, D. R. Ni, Z. Y. Ma, Friction stir welding of discontinuously reinforced aluminum matrix composites: a review, Acta Metall Sin, 27, 816–824, (2014). [CrossRef] [Google Scholar]
  16. O. S. Salih, H. Ou,W. Sun,M. C. DG, A review of friction stir welding of aluminium matrix composites, Mater. Des., 86, 61–71,(2015). [CrossRef] [Google Scholar]
  17. M. A. Fènoël, A. Simar, A review about Friction Stir Welding of metal matrix composites, Materials Characterization, 120, 1-17, (2016). [CrossRef] [Google Scholar]
  18. R. S. Mishra, P. S. De, N. Kumar, Friction Stir Welding and Processing, Science and Engineering, (Springer, London, 2014). [Google Scholar]
  19. S. Prabhu, A. K. Shettigar. K. Rao, S. Rao and M. Herbert, Influence of Welding Process Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Matrix Composite, Materials Science Forum, 880, 50-53, (2017). [CrossRef] [Google Scholar]
  20. Y. Bozkurt, H. Uzun, S. Salman, Microstructure and mechanical properties of friction stir welded particulate reinforced AA2124/SiC/25p-T4 composite, J. Compos. Mater., 45(21), 2237–2245, (2011). [CrossRef] [Google Scholar]
  21. P. Cavaliere, E. Cerri, L. Marzoli, J. Dos Santos, Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites, Appl. Compos. Mater., 11, 247–258, (2004). [CrossRef] [Google Scholar]
  22. L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Microstructure, tensile and fatigue properties of AA6061/20 vol.% Al2O3p friction stir welded joints, Compos. A: Appl. Sci. Manuf., vol. 38, no.4, pp. 1200–1210, 2007. [CrossRef] [Google Scholar]
  23. F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera, G. González-Doncel, Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement, Compos. A: Appl. Sci.Manuf, 54, 117–123, (2013). [CrossRef] [Google Scholar]
  24. P. Periyasamy, B. Mohan, V. Balasubramanian, Effect of heat input on mechanical and metallurgical properties of friction stir welded AA6061-10% SiCp MMCs, J. Mater. Eng. Perform, 21(11), 2417–2428, (2012). [CrossRef] [Google Scholar]
  25. D. R. Ni, D. L. Chen, D.Wang, B. L. Xiao, Z. Y. Ma, Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet, Mater. Des., 51,199–205, (2013). [CrossRef] [Google Scholar]
  26. K. Kalaiselvan, I. Dinaharan, N. Murugan, Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite, Mater. Des., 55, 176–182, (2014). [CrossRef] [Google Scholar]
  27. H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Mater. Des., 32(2), 976–983, (2011). [CrossRef] [Google Scholar]
  28. L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, L. M. Volpone, Friction stir welding of an AA6061/Al2O3/20p reinforced alloy, Compos. Sci. Technol., 66(2), 363–371, (2006). [CrossRef] [Google Scholar]
  29. G. Minak, L. Ceschini, I. Boromei, M. Ponte, Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites, Int. J. Fatigue, 32(1), 218–226, (2010). [CrossRef] [Google Scholar]
  30. S. Peddavarapu, S. Raghuraman, R. J. Bharathi, G. V. Sunil and Manikanta, Micro Structural Investigation On Friction Stir Welded Al--4.5Cu--5TiB2 Composite, Transactions of the Indian Institute of Metals, 70(3), 703—708, (2017). [CrossRef] [Google Scholar]
  31. Feng, B. Xiao, Z. Ma, Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite, Compos. Sci. Technol., 68(9), 2141–2148, (2008). [CrossRef] [Google Scholar]
  32. D. Wang, B. L. Xiao, Q. Z.Wang, Z. Y. Ma, Evolution of the microstructure and strength in the nugget zone of friction stir welded SiCp/Al–Cu–Mg composite:, J. Mater. Sci. Technol., 30(1), 54–60, (2014). [CrossRef] [Google Scholar]
  33. C. Devanathan, A. S. Babu, Friction stir welding of metal matrix composite using coated tool, Proc Mater Sci, 6, 1470–1475, (2014). [CrossRef] [Google Scholar]
  34. Dinaharan, N. Murugan, Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites, Mater. Sci. Eng. A, 543, 257–266, (2012). [CrossRef] [Google Scholar]
  35. A. Kumar, M. M. Mahapatra, P. K. Jha, N. R. Mandal, V. Devuri, Influence of tool geometries and process variables on friction stir butt welding of Al–4.5%Cu/TiC in situ metal matrix composites, Mater. Des., 59, 406–414, (2014). [CrossRef] [Google Scholar]
  36. D. Wang, Q. Z. Wang, B. L. Xiao, Z. Y. Ma, Achieving friction stir welded SiCp/Al–Cu– Mg composite joint of nearly equal strength to base material at high welding speed, Mater. Sci. Eng. A, 589, 271–274, (2014). [CrossRef] [Google Scholar]
  37. N. Murugan, B. Ashok Kumar, Prediction of tensile strength of friction stir welded stir cast AA6061-T6/AlNp composite, Mater. Des., 51, 998–1007, (2013). [CrossRef] [Google Scholar]
  38. A. K. Shettigar, S. Prabhu, R. Malghan, S. Rao and M. Herbert, Application of Neural Network for the Prediction of Tensile Properties of Friction Stir Welded Composites, Materials Science Forum, 880, 128-131, (2017). [CrossRef] [Google Scholar]
  39. B. Ashok Kumar, N. Murugan, Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite, Mater. Des., 57, 383–393, (2014). [CrossRef] [Google Scholar]
  40. B. S. Yigezu, D. Venkateswarlu, M. M.Mahapatra, P. K. Jha, N. R.Mandal, On friction stir butt welding of Al + 12Si/10 wt% TiC in situ composite, Mater. Des., 54, 1019–1027, (2014). [CrossRef] [Google Scholar]
  41. K. Kalaiselvan, N. Murugan, Role of friction stir welding parameters on tensile strength of AA6061–B4C composite joints, Trans. Nonferrous Metals Soc. China, 23(3), 616–624, (2013). [CrossRef] [Google Scholar]
  42. S. J. Vijay, N.Murugan, Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite, Mater. Des., 31(7), 3585–3589, (2010). [CrossRef] [Google Scholar]
  43. A. M. Hassan, T. Qasim, A. Ghaithan, Effect of pin profile on friction stir welded aluminum matrix composites, Mater. Manuf. Process, 27(12), 1397–1401, (2012). [CrossRef] [Google Scholar]
  44. D. R. Ni, D. L. Chen, D. Wang, B. L. Xiao, Z. Y. Ma, Tensile properties and strain hardening behavior of friction stir welded SiCp/AA2009 composite joints, Mater. Sci. Eng. A, 608, 1–10, (2014). [CrossRef] [Google Scholar]
  45. T.Prater, M. S. Alvin, E. C. George, T. G. Brian, D. C. Chase, A comparative evaluation of the wear resistance of various tool materials in friction stir welding of metal matrix composites, Journal of Materials Engineering and Performance, 22, 1807–1813, (2013). [CrossRef] [Google Scholar]
  46. A. Bist, S. J. Saini, B. Sharma, A review of tool wear prediction during friction stir welding of aluminium matrix composite, Trans Nonferrous Met Soc China, 26, 2003–2018, (2016). [CrossRef] [Google Scholar]
  47. M. Collier, R. Steel, T. Nelson, C. Sorensen and S. Packer, Grade development of polycrystalline cubic boron nitride for friction stir processing of ferrous alloys, Materials Science Forum, 426-432, 3011–3016, (2003). [CrossRef] [Google Scholar]
  48. F. J. Liu, J. C. Feng, H. Fujii and K. Nogi, Wear characteristics of a WC–Co tool in friction stir welding of AC4A+30% vol. SiCp composite, International Journal of Machine Tools and Manufacture, 45, 1635–1639, (2005). [CrossRef] [Google Scholar]
  49. G. J. Fernandez, L. E. Murr, Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal matrix composite, Materials Characterization, 52, 65–75, (2004). [CrossRef] [Google Scholar]
  50. R. A. Prado, L. E. Murr, K. F. Soto, J. C. Mcclure, Self-optimization in tool wear for friction-stir welding of Al 6061+20%Al2O3, Materials Science and Engineering A, 349, 156–165, (2003). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.