Open Access
Issue
MATEC Web Conf.
Volume 144, 2018
International Conference on Research in Mechanical Engineering Sciences (RiMES 2017)
Article Number 03002
Number of page(s) 13
Section Manufacturing Engineering
DOI https://doi.org/10.1051/matecconf/201814403002
Published online 09 January 2018
  1. N. Chawla, K. K. Chawla, Metal Matrix Composites, (Springer, 2006).
  2. M. Haghshenas, Metal–Matrix Composites, In Reference Module in Materials Science and Materials Engineering, (Elsevier, 2016).
  3. M.B.D. Ellis, Joining of aluminium based metal matrix composites, Int. Mater. Rev., 41(2), 41–58, (1996). [CrossRef]
  4. Pal, T. K., Joining of aluminium metal matrix composites, Mater. Manuf. Process., 20, 717–726, (2005). [CrossRef]
  5. D. Storjohann, O. M. Barabash, S. S. Babu, S. A. David, P. S. Sklad, E. E. Bloom, Fusion and friction stir welding of aluminum metal–matrix composites, Metall. Mater. Trans. A, 36A, 3237–3247, (2005). [CrossRef]
  6. K. Peng, H. C. Cui, F. G. Lu, X. M. Wu, X. H. Tang, S. Yao, S. N. Lou, Mechanical properties and wear resistance of aluminum composites welded by electron beam, Trans. Nonferrous Metals Soc. China, 21, 1925–1931, (2011). [CrossRef]
  7. J. Niu, L. Pan, M.Wang, C. Fu, X. Meng, Research on laser welding of aluminium matrix composite SiCw/6061, Vacuum, 80, 1396–1399, (2006). [CrossRef]
  8. W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Temple-Smith, and C. Dawes, Friction Stir Butt Welding, International Patent No. PCT/GB92/02203, GB Patent No. 9125978.8, 1991, U.S. Patent No. 5,460,317, 1995. (1991).
  9. P. L. Threadgill, A. J. Leonard, H. R. Shercliff, P. J. Withers, Friction stir welding of aluminium alloys, Int. Mater. Rev., 54(2), 49–93, (2009). [CrossRef]
  10. G. Cam, Friction stir welded structural materials: beyond Al-alloys, Int. Mater. Rev., 56(1), 1–47, (2011). [CrossRef]
  11. R. Nandan, T. DebRoy, H.K.D.H. Bhadeshia, Recent advances in friction stir welding - process, weldment structure and properties, Prog. Mater. Sci., 53, 980–1023, (2008). [CrossRef]
  12. R. S. Mishra, Z. Y. Ma, Friction stir welding and processing, Mater Sci Eng R, 50, 1–78, (2005). [CrossRef]
  13. W. M. Thomas, D. G. Staines, I. M. Norris, R. de Frias, Friction stir welding tools and developments, Weld. World, 47, 10–17, (2013). [CrossRef]
  14. Y. N. Zhang, X. Cao, S. Larose, P.Wanjara, Review of tools for friction stir welding and processing, Can. Metall. Q., 51(3), 250–261, (2012). [CrossRef]
  15. D. Wang, B. L. Xiao, D. R. Ni, Z. Y. Ma, Friction stir welding of discontinuously reinforced aluminum matrix composites: a review, Acta Metall Sin, 27, 816–824, (2014). [CrossRef]
  16. O. S. Salih, H. Ou,W. Sun,M. C. DG, A review of friction stir welding of aluminium matrix composites, Mater. Des., 86, 61–71,(2015). [CrossRef]
  17. M. A. Fènoël, A. Simar, A review about Friction Stir Welding of metal matrix composites, Materials Characterization, 120, 1-17, (2016). [CrossRef]
  18. R. S. Mishra, P. S. De, N. Kumar, Friction Stir Welding and Processing, Science and Engineering, (Springer, London, 2014).
  19. S. Prabhu, A. K. Shettigar. K. Rao, S. Rao and M. Herbert, Influence of Welding Process Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Aluminium Matrix Composite, Materials Science Forum, 880, 50-53, (2017). [CrossRef]
  20. Y. Bozkurt, H. Uzun, S. Salman, Microstructure and mechanical properties of friction stir welded particulate reinforced AA2124/SiC/25p-T4 composite, J. Compos. Mater., 45(21), 2237–2245, (2011). [CrossRef]
  21. P. Cavaliere, E. Cerri, L. Marzoli, J. Dos Santos, Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites, Appl. Compos. Mater., 11, 247–258, (2004). [CrossRef]
  22. L. Ceschini, I. Boromei, G. Minak, A. Morri, F. Tarterini, Microstructure, tensile and fatigue properties of AA6061/20 vol.% Al2O3p friction stir welded joints, Compos. A: Appl. Sci. Manuf., vol. 38, no.4, pp. 1200–1210, 2007. [CrossRef]
  23. F. Cioffi, R. Fernández, D. Gesto, P. Rey, D. Verdera, G. González-Doncel, Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement, Compos. A: Appl. Sci.Manuf, 54, 117–123, (2013). [CrossRef]
  24. P. Periyasamy, B. Mohan, V. Balasubramanian, Effect of heat input on mechanical and metallurgical properties of friction stir welded AA6061-10% SiCp MMCs, J. Mater. Eng. Perform, 21(11), 2417–2428, (2012). [CrossRef]
  25. D. R. Ni, D. L. Chen, D.Wang, B. L. Xiao, Z. Y. Ma, Influence of microstructural evolution on tensile properties of friction stir welded joint of rolled SiCp/AA2009-T351 sheet, Mater. Des., 51,199–205, (2013). [CrossRef]
  26. K. Kalaiselvan, I. Dinaharan, N. Murugan, Characterization of friction stir welded boron carbide particulate reinforced AA6061 aluminum alloy stir cast composite, Mater. Des., 55, 176–182, (2014). [CrossRef]
  27. H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite, Mater. Des., 32(2), 976–983, (2011). [CrossRef]
  28. L. M. Marzoli, A. V. Strombeck, J. F. Dos Santos, C. Gambaro, L. M. Volpone, Friction stir welding of an AA6061/Al2O3/20p reinforced alloy, Compos. Sci. Technol., 66(2), 363–371, (2006). [CrossRef]
  29. G. Minak, L. Ceschini, I. Boromei, M. Ponte, Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites, Int. J. Fatigue, 32(1), 218–226, (2010). [CrossRef]
  30. S. Peddavarapu, S. Raghuraman, R. J. Bharathi, G. V. Sunil and Manikanta, Micro Structural Investigation On Friction Stir Welded Al--4.5Cu--5TiB2 Composite, Transactions of the Indian Institute of Metals, 70(3), 703—708, (2017). [CrossRef]
  31. Feng, B. Xiao, Z. Ma, Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite, Compos. Sci. Technol., 68(9), 2141–2148, (2008). [CrossRef]
  32. D. Wang, B. L. Xiao, Q. Z.Wang, Z. Y. Ma, Evolution of the microstructure and strength in the nugget zone of friction stir welded SiCp/Al–Cu–Mg composite:, J. Mater. Sci. Technol., 30(1), 54–60, (2014). [CrossRef]
  33. C. Devanathan, A. S. Babu, Friction stir welding of metal matrix composite using coated tool, Proc Mater Sci, 6, 1470–1475, (2014). [CrossRef]
  34. Dinaharan, N. Murugan, Effect of friction stir welding on microstructure, mechanical and wear properties of AA6061/ZrB2 in situ cast composites, Mater. Sci. Eng. A, 543, 257–266, (2012). [CrossRef]
  35. A. Kumar, M. M. Mahapatra, P. K. Jha, N. R. Mandal, V. Devuri, Influence of tool geometries and process variables on friction stir butt welding of Al–4.5%Cu/TiC in situ metal matrix composites, Mater. Des., 59, 406–414, (2014). [CrossRef]
  36. D. Wang, Q. Z. Wang, B. L. Xiao, Z. Y. Ma, Achieving friction stir welded SiCp/Al–Cu– Mg composite joint of nearly equal strength to base material at high welding speed, Mater. Sci. Eng. A, 589, 271–274, (2014). [CrossRef]
  37. N. Murugan, B. Ashok Kumar, Prediction of tensile strength of friction stir welded stir cast AA6061-T6/AlNp composite, Mater. Des., 51, 998–1007, (2013). [CrossRef]
  38. A. K. Shettigar, S. Prabhu, R. Malghan, S. Rao and M. Herbert, Application of Neural Network for the Prediction of Tensile Properties of Friction Stir Welded Composites, Materials Science Forum, 880, 128-131, (2017). [CrossRef]
  39. B. Ashok Kumar, N. Murugan, Optimization of friction stir welding process parameters to maximize tensile strength of stir cast AA6061-T6/AlNp composite, Mater. Des., 57, 383–393, (2014). [CrossRef]
  40. B. S. Yigezu, D. Venkateswarlu, M. M.Mahapatra, P. K. Jha, N. R.Mandal, On friction stir butt welding of Al + 12Si/10 wt% TiC in situ composite, Mater. Des., 54, 1019–1027, (2014). [CrossRef]
  41. K. Kalaiselvan, N. Murugan, Role of friction stir welding parameters on tensile strength of AA6061–B4C composite joints, Trans. Nonferrous Metals Soc. China, 23(3), 616–624, (2013). [CrossRef]
  42. S. J. Vijay, N.Murugan, Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al–10 wt.% TiB2 metal matrix composite, Mater. Des., 31(7), 3585–3589, (2010). [CrossRef]
  43. A. M. Hassan, T. Qasim, A. Ghaithan, Effect of pin profile on friction stir welded aluminum matrix composites, Mater. Manuf. Process, 27(12), 1397–1401, (2012). [CrossRef]
  44. D. R. Ni, D. L. Chen, D. Wang, B. L. Xiao, Z. Y. Ma, Tensile properties and strain hardening behavior of friction stir welded SiCp/AA2009 composite joints, Mater. Sci. Eng. A, 608, 1–10, (2014). [CrossRef]
  45. T.Prater, M. S. Alvin, E. C. George, T. G. Brian, D. C. Chase, A comparative evaluation of the wear resistance of various tool materials in friction stir welding of metal matrix composites, Journal of Materials Engineering and Performance, 22, 1807–1813, (2013). [CrossRef]
  46. A. Bist, S. J. Saini, B. Sharma, A review of tool wear prediction during friction stir welding of aluminium matrix composite, Trans Nonferrous Met Soc China, 26, 2003–2018, (2016). [CrossRef]
  47. M. Collier, R. Steel, T. Nelson, C. Sorensen and S. Packer, Grade development of polycrystalline cubic boron nitride for friction stir processing of ferrous alloys, Materials Science Forum, 426-432, 3011–3016, (2003). [CrossRef]
  48. F. J. Liu, J. C. Feng, H. Fujii and K. Nogi, Wear characteristics of a WC–Co tool in friction stir welding of AC4A+30% vol. SiCp composite, International Journal of Machine Tools and Manufacture, 45, 1635–1639, (2005). [CrossRef]
  49. G. J. Fernandez, L. E. Murr, Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal matrix composite, Materials Characterization, 52, 65–75, (2004). [CrossRef]
  50. R. A. Prado, L. E. Murr, K. F. Soto, J. C. Mcclure, Self-optimization in tool wear for friction-stir welding of Al 6061+20%Al2O3, Materials Science and Engineering A, 349, 156–165, (2003). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.