Open Access
Issue
MATEC Web Conf.
Volume 140, 2017
2017 International Conference on Emerging Electronic Solutions for IoT (ICEESI 2017)
Article Number 01034
Number of page(s) 5
DOI https://doi.org/10.1051/matecconf/201714001034
Published online 11 December 2017
  1. Thomassin, J. M. et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R Reports 74, 211–232 (2013). [CrossRef] [Google Scholar]
  2. Suchea, M. et al. Nanostructured composite layers for electromagnetic shielding in the GHz frequency range. Appl. Surf. Sci. 352, 151–154 (2015). [CrossRef] [Google Scholar]
  3. Chung, D. D. . Electromagnetic interference shielding effectiveness of carbon materials. Carbon N.Y. 39, 279–285 (2001). [CrossRef] [Google Scholar]
  4. Al-Saleh, M. H. & Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon N.Y. 47, 1738–1746 (2009). [CrossRef] [Google Scholar]
  5. Bayat, M., Yang, H., Ko, F. K., Michelson, D. & Mei, A. Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polym. (United Kingdom) 55, 936–943 (2014). [Google Scholar]
  6. Kuester, S., Barra, G. M. O., Ferreira, J. C., Soares, B. G. & Demarquette, N. R. Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) and carbon nanotubes. Eur. Polym. J. 77, 43–53 (2016). [CrossRef] [Google Scholar]
  7. Nornikman, H., Malek, F., Soh, P. J., & Azremi, A. A. H., Reflection loss performance of hexagonal base pyramid microwave absorber using different agricultural waste material. 2010 Loughbrgh. Antennas Propag. Conf. LAPC 2010 313–316 (2010). doi:10.1109/LAPC.2010.5666029 [CrossRef] [Google Scholar]
  8. Liyana, Z. et al. Investigation of sugar cane bagasse as alternative material for pyramidal microwave absorber design. IEEE Symp. Wirel. Technol. Appl. ISWTA 66–70 (2012). doi:10.1109/ISWTA.2012.6373879 [Google Scholar]
  9. Smythe, B., Casserly, S. & Arakaki, D. Organic-based microwave frequency absorbers using corn stover. IEEE Antennas Propag. Soc. AP-S Int. Symp. 920–921 (2014). doi:10.1109/APS.2014.6904788 [Google Scholar]
  10. Nornikman, H. et al. Setup and Results of Pyramidal Microwave Absorbers Using Rice Husks. Prog. Electromagn. Res. 111, 141–161 (2011). [CrossRef] [Google Scholar]
  11. Salleh, M.K.M. et al. Experimental verification of multi-layer coconut shell-derived microwave absorbers. 2011 IEEE Int. RF Microw. Conf. RFM 2011 - Proc. 115–118 (2011). doi:10.1109/RFM.2011.6168709 [Google Scholar]
  12. Farhany, Z. S. et al. Potential of dried banana leaves for pyramidal microwave absorber design. IEEE Symp. Wirel. Technol. Appl. ISWTA 60–65 (2012). doi:10.1109/ISWTA.2012.6373878 [Google Scholar]
  13. Noordin, I. R. M. et al. Investigation of oil palm ash microwave absorber for broadband application. Proc. – 2012 IEEE 8th Int. Colloq. Signal Process. Its Appl. CSPA 2012 232–235 (2012). doi:10.1109/CSPA.2012.6194724 [Google Scholar]
  14. Shaaban, A.Se, S., Ibrahim, I. M. & Ahsan, Q. Preparation of rubber wood sawdust-based activated carbon and its use as a filler of polyurethane matrix composites for microwave absorption. New Carbon Mater. 30, 167–175 (2015). [CrossRef] [Google Scholar]
  15. Kaur, R., Aul, G. D. & Chawla, V. Improved Reflection Loss Performance of Dried Banana Leaves Pyramidal Microwave Absorbers by Coal for Application in Anechoic Chambers. 43, 157–164 (2015). [Google Scholar]
  16. Potulski, D. C., De Muniz, G. I. B., Klock, U. & De Andrade, A. S. Influ??ncia da incorpora????o de celulose microfibrilada nas propriedades de resist??ncia mec??nicas do papel. Sci. For. Sci. 40, 345–351 (2014). [Google Scholar]
  17. Kim, J. H. et al. Review of nanocellulose for sustainable future materials. Int. J. Precis. Eng. Manuf. - Green Technol. 2, 197–213 (2015). [CrossRef] [Google Scholar]
  18. Pandey, J. K., Takagi, H., Nakagaito, A. N., Saini, D. R. & Ahn, S. H. An overview on the cellulose based conducting composites. Compos. Part B Eng. 43, 2822–2826 (2012). [CrossRef] [Google Scholar]
  19. Jabbour, L., Chaussy, D., Eyraud, B. & Beneventi, D. Highly conductive graphite/carbon fiber/cellulose composite papers. Compos. Sci. Technol. 72, 616–623 (2012). [CrossRef] [Google Scholar]
  20. Imai, M., Akiyama, K., Tanaka, T. & Sano, E. Highly strong and conductive carbon nanotube/cellulose composite paper. Compos. Sci. Technol. 70, 1564–1570 (2010). [CrossRef] [Google Scholar]
  21. Jung, Y. H. et al. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015). [CrossRef] [Google Scholar]
  22. Qin, F. & Brosseau, C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles APPLIED PHYSICS REVIEWS A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. 61301, (2012). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.