Open Access
MATEC Web Conf.
Volume 135, 2017
8th International Conference on Mechanical and Manufacturing Engineering 2017 (ICME’17)
Article Number 00013
Number of page(s) 10
Published online 20 November 2017
  1. J.J., Rino, D. Chandramohan D, K.S. Sucitharan, V.D. Jebin, (2012). An overview on development of aluminium metal matrix composites with hybrid reinforcement. IJSR, India online ISSN, 2319-7064. [Google Scholar]
  2. Medvedev, A. E.Neumann, A. Ng, H. P. Lapovok, R. Kasper, C. Lowe, T. C. & Estrin, Y. (2017). Combined effect of grain refinement and surface modification of pure titanium on the attachment of mesenchymal stem cells and osteoblast-like SaOS-2 cells. Materials Science and Engineering: C, 71, 483-497. [CrossRef] [Google Scholar]
  3. Gronostajski, J.Marciniak, H. & Matuszak, A. (2000). New methods of aluminium and aluminium-alloy chips recycling. Journal of materials processing technology, 106(1), 34-39. [CrossRef] [Google Scholar]
  4. Härtel, M. Wagner, S. Frint, P. & Wagner, M. F. (2014). Effects of particle reinforcement and ECAP on the precipitation kinetics of an Al-Cu alloy. In. IOP Conference Series: Materials Science and Engineering (Vol. 63, No. 1, p. 012080). IOP Publishing. [CrossRef] [Google Scholar]
  5. Harichandran, R. & Selvakumar, N. (2016). Effect of nano/micro B 4 C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of Civil and Mechanical Engineering, 16(1), 147-158. [CrossRef] [Google Scholar]
  6. Samuel, M. (2003). Reinforcement of recycled aluminum-alloy scrap with Saffil ceramic fibers. Journal of Materials Processing Technology, 142(2), 295-306. [CrossRef] [Google Scholar]
  7. Sabbaghianrad, S. & Langdon, T.G. (2016). Developing superplasticity in an aluminum matrix composite processed by high-pressure torsion. Materials Science and Engineering: A, 655, 36-43. [CrossRef] [Google Scholar]
  8. Onoro, J.Salvador, M. D. & Cambronera, L.E. G. (2009). High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles. Materials Science and Engineering: A, 499(1), 421-426. [CrossRef] [Google Scholar]
  9. Sanusi, O. Makinde, D. & Oliver, J. (2012). Equal channel angular pressing technique for the formation of ultra-fine grained structures. South African Journal of Science, 108,(9-10), 1-7. [CrossRef] [Google Scholar]
  10. Siddique, T. A.Islam, M.T.Kabir, M. S. & Haque, M.N. (2014). Effect of SiCp addition on the indentation hardness of as-cast Al metal matrix composites. Int. J. Innov. Sci. Res, 11, 433-438 [Google Scholar]
  11. Jithin Jose, 2016 studies on mechanical and wear properties of Al7075/ Zircon/ Fly ash hybrid metal matrix composites. [Google Scholar]
  12. Haghighi, R. D. Jahromi, S. J. Moresedgh, A. & Khorshid, M. T. (2012). A comparison between ECAP and conventional extrusion for consolidation of aluminum metal matrix composite. Journal of materials engineering and performance, 21(9), 1885-1892. [CrossRef] [Google Scholar]
  13. Alo, O. (2015). Mechanical Properties of Al-Si-SiCp Composites. International Journal of Scientific &Engineering Research, 6(9), 1602-1609. [Google Scholar]
  14. Roshan, M. R. Mousavian, T. R. Ebrahimkhani, H. & Mosleh, A. (2013). Fabrication of Al-based composites reinforced with Al2O3-TiB2 ceramic composite particulates using vortex-casting method. Journal of Mining and Metallurgy, Section B: Metallurgy, 49(3), 299-305. [CrossRef] [Google Scholar]
  15. Djavanroodi, F. & Ebrahimi, M. (2010). Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Materials Science and Engineering: A, 527(4), 1230-1235. [CrossRef] [Google Scholar]
  16. Shaeri, M. H. Shaeri, M. Ebrahimi, M. Salehi, M. T. & Seyyedein, S. H. (2016). Effect of ECAP temperature on microstructure and mechanical properties of Al-Zn-Mg-Cu alloy. Progress in Natural Science: Materials International, 26(2), 182-191. [CrossRef] [Google Scholar]
  17. Zare, H.Jahedi, M. Toroghinejad, M. R. Meratian, M. & Knezevic, M. (2016). Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Materials &Design, 106, 112-119. [CrossRef] [Google Scholar]
  18. Sitdikov, O. S. (2016). Comparative analysis of microstructures formed in highly alloyed aluminum alloy during high-temperature equal-channel angular pressing and multidirectional forging. Inorganic Materials: Applied Research, 7(2), 149-157. [CrossRef] [Google Scholar]
  19. Valiev, R. Z. & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in materials science, 51(7), 881-981. [Google Scholar]
  20. Furukawa, M.Horita, Z.Nemoto, M. & Langdon, T. G. (2001). Review: processing of metals by equal-channel angular pressing. Journal of materials science, 36(12), 2835-2843. [Google Scholar]
  21. Prasad, C. V. & Rao, K. M. (2016). A Study On Effect Of Mechanical Properties Of Al-Zro2 Composite By Liquid Routing. IJSEAT, 4(4), 189-192. [Google Scholar]
  22. Šnajdar-Musa, M. & Schauperl, Z. (2013). ECAP-new consolidation method for production of aluminium matrix composites with ceramic reinforcement. Processing and Application of Ceramics, 7(2), 63-68 [CrossRef] [Google Scholar]
  23. Abbas, A. T.Taha, M. A.Ragab, A. E. El-Danaf, E. A. & Abd El Aal, M. I. (2017). Effect of Equal Channel Angular Pressing on the Surface Roughness of Solid-state Recycled Aluminum Alloy 6061 Chips. Advances in Materials Science and Engineering, 2017. [EDP Sciences] [Google Scholar]
  24. Xu, C. & Langdon, T. G. (2007). The development of hardness homogeneity in aluminum and an aluminum alloy processed by ECAP. Journal of materials science, 42(5), 1542-1550. [CrossRef] [Google Scholar]
  25. Chmura, W. & Gronostajski, Z. (2006). Bearing composites made from aluminium and aluminium bronze chips. Journal of materials processing technology, 178(1), 188-193. [CrossRef] [Google Scholar]
  26. Ramu, G. & Bauri, R. (2009). Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiC p composites. Materials &Design, 30(9), 3554-3559. [Google Scholar]
  27. Saheb, D. A. (2011). Aluminium silicon carbide and aluminium graphite particulate composites. ARPN Journal of Engineering and Applied Sciences, 6(10), 41-46. [Google Scholar]
  28. Rahman, M. H. & Al Rashed, H. M. (2014). Characterization of silicon carbide reinforced aluminium matrix composites. Procedia Engineering, 90, 103-109. [Google Scholar]
  29. Alaneme, K. K.Bodunrin, M. O. & Awe, A. A. (2016). Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud University-Engineering Sciences. [Google Scholar]
  30. Fogagnolo, J. B. Ruiz-Navas, E. M. Simón, M. A. & Martinez, M. A. (2003). Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion. Journal of Materials Processing Technology, 143, 792-795. [CrossRef] [Google Scholar]
  31. Dhanasekaran, S. et al. "SiC and Al2O3 Reinforced Aluminum Metal Matrix Composites for Heavy Vehicle Clutch Applications." Transactions of the Indian Institute of Metals 69.3, (2016): 699-703. [CrossRef] [Google Scholar]
  32. Kačmarčik, I.Pepelnjak, T. & Plančak, M. (2012). Solid-state recycling by cold compression of al-alloy chips. Journal for Technology of Plasticity, 37(1), 35-47. [Google Scholar]
  33. Ramnath, B. V.Elanchezhian, C.Jaivignesh, M. Rajesh, S. Parswajinan, C. & Ghias, A. S. A. (2014). Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites. Materials &Design, 58, 332-338. [Google Scholar]
  34. Abdizadeh, H. Ashuri, M. Moghadam, P. T. Nouribahadory, A. & Baharvandi, H. R. (2011). Improvement in physical and mechanical properties of aluminum/zircon composites fabricated by powder metallurgy method. Materials &Design, 32(8), 4417-4423. [CrossRef] [Google Scholar]
  35. Xiong, B. (2015) Optimization of recycling process of die cast aluminum A380 machining chips. [Google Scholar]
  36. Mindivan, H.Cimenoglu, H. & Kayali, E. S. (2009). Production of the composite from 6082 Al alloy chips and fly ash particles by hot pressing. In TMS annual meeting. [Google Scholar]
  37. Reddy, S. P. Ramana, B. & Reddy, A. C. (2010). Compacting Characteristics of Aluminum-10 wt% Fly Ash-Lead Metal Matrix Composites. International Journal of Materials Science, 5(6), 777-783. [Google Scholar]
  38. Muley, A. V.Aravindan, S. & Singh, I. P. (2015). Nano and hybrid aluminum based metal matrix composites: an overview. Manufacturing Review, 2, 15. [CrossRef] [EDP Sciences] [Google Scholar]
  39. Patil, B. V. Chakkingal, U. & Kumar, T. P. (2010). Influence of Outer Corner Radius in Equal Channel Angular Pressing. World Academy of Science, Engineering and Technology, 62, 714-720. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.