Open Access
Issue
MATEC Web Conf.
Volume 135, 2017
8th International Conference on Mechanical and Manufacturing Engineering 2017 (ICME’17)
Article Number 00014
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/201713500014
Published online 20 November 2017
  1. D. Kunii, O. Levenspiel, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, (1991) [Google Scholar]
  2. D. Geldart, J. Baeyens, The design of distributors for gas-fluidized beds, Powder Technology, 42(1), pp. 67-78 (1985) [CrossRef] [Google Scholar]
  3. J.C., Agarwal, W.L. Davis, D.T. King, Fluidized-bed coal dryer, Chem. Eng. Progr 58(11), pp. 85-90 (1962) [Google Scholar]
  4. R. Siegel, Effect of distributor plate-to-bed resistance ratio on onset of fluidized-bed channeling, AIChE Journal, 22(3), pp. 590-592 (1976) [CrossRef] [Google Scholar]
  5. C.K., Gupta, D. Sathiyamoorthy, Fluid Bed Technology in Materials Processing, CRC Press, New York (1998) [Google Scholar]
  6. A.S., Mujumdar, Handbook of Industrial Drying, 3rd ed., CRC Press: Boca Raton (2007) [Google Scholar]
  7. M. Wormsbecker, T.S. Pugsley, H. Tanfara, The influence of distributor design on fluidized bed dryer hydrodynamics, 12th Int. Conf. on Fluidization, paper 100 (2007) [EDP Sciences] [Google Scholar]
  8. M. Wormsbecker, T.S. Pugsley, Distributor induced hydrodynamics in a conical fluidized bed dryer, Drying Technology, 27(6), pp. 797-804 (2009) [CrossRef] [Google Scholar]
  9. S.Y., Son, D.H. Lee, G.Y. Han, D.J. Kim, S.J. Sim, S.D. Kim, Effect of air distributor on the fluidization characteristics in conical gas fluidized beds Korean Journal of Chemical Engineering, 22(2), pp. 315-320 (2005) [CrossRef] [Google Scholar]
  10. W. Ciesielczyk, Novel gas distributor for fluidized bed drying of biomass, Drying Technology, 27(12), pp. 1309-1305 (2009) [CrossRef] [Google Scholar]
  11. D. Sathiyamoorthy, M. Horio, On the influence of aspect ratio and distributor in gas solid fluidized beds, Chemical Engineering Journal, 93(2), pp. 151-161 (2003) [CrossRef] [Google Scholar]
  12. C. Sobrino, J.A. Almendros-Ibáñez, D. Santana, M. De Vega, Fluidization of Group B particles with a rotating distributor Powder Technology, 181(3), pp. 273-280 (2008) [CrossRef] [Google Scholar]
  13. C. Sobrino, N. Ellis, M. de Vega, Distributor effect near the bottom region of turbulent fluidized bed Powder Technology, 189(1), pp. 25-33 (2009) [CrossRef] [Google Scholar]
  14. S.M., Aworinde, D.J. Holland, J.F. Davidson, Investigation of a swirling flow nozzle for a fluidised bed gas distributor, Chemical Engineering Science, 132, pp. 22-31 (2015) [CrossRef] [Google Scholar]
  15. C.E., Dodson, Torftech Limited, Apparatus for processing matter in a turbulent mass of particulate material, US Patent 4,479,920, (1984) [Google Scholar]
  16. J. Shu, V.I. Lakshmanan, C.E. Dodson, Hydrodynamic study of a toroidal fluidized bed reactor, Chemical Engineering and Processing, 39(6), pp. 499-506 (2000) [CrossRef] [Google Scholar]
  17. N.K., Sowards, Energy Products of Idaho, Low pollution incineration of solid waste, US Patent No 4,060,041, (1977) [Google Scholar]
  18. S. Nieh, G. Yang, Particle flow pattern in the freeboard of a vortexing fluidized bed, Powder Technology, 50(2), pp. 121-131 (1987) [CrossRef] [Google Scholar]
  19. J. Zhang, S. Nieh, Swirling, reacting, turbulent gas-particle flow in a vortex combustor, Powder Technology, 112(1), pp. 70-78 (2000) [CrossRef] [Google Scholar]
  20. C.S., Chyang, K.C. Lo, K.L. Wang, Performance evaluation of a pilot scale vortexing fluidized bed combustor, Korean Journal of Chemical Engineering, 22, (5), pp. 774-782 (2005) [CrossRef] [Google Scholar]
  21. F. Duan, C.S. Chyang, S.H. Hsu, J. Tso, Combustion behavior and pollutant emissions of batch fluidized bed combustion, Journal of the Taiwan Institute of Chemical Engineers, 44(6), pp. 1034-1038 (2013) [CrossRef] [Google Scholar]
  22. F. Duan, C. Chyang, Y. Chin, J. Tso, Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator Journal of Environmental Sciences, 25(2), pp. 335-339 (2013) [CrossRef] [Google Scholar]
  23. R. Kaewklum, V.I. Kuprianov, Experimental studies on a novel swirling fluidized-bed combustor using an annular spiral air distributor, Fuel, 89(1), pp. 43-52 (2010) [CrossRef] [Google Scholar]
  24. T. Madhiyanon, N. Piriyarungroj, S. Soponronnarit, Cold flow behaviour study in novel cyclonic fluidized bed combustor (Ψ-FBC) Energy Conversion and Management, 49(5), pp. 1202-1210 (2008) [CrossRef] [Google Scholar]
  25. T. Madhiyanon, A. Lapirattanakun, P. Sathiruangsak, S. Soponronnarit, A novel cyclonic fluidized bed combustor (Ψ-FBC): Combustion and thermal efficiency, temperature distributions combustion intensity and emission of pollutants, Combustion and Flame, 146(1), pp. 232-245 (2006) [Google Scholar]
  26. T. Madhiyanon, P. Sathitruangsak, S. Soponronnarit, Co-combustion of rice husk with coal in a cyclonic fluidized-bed combustor (Ψ-FBC) Fuel, 88(1), pp. 132-138 (2009) [CrossRef] [Google Scholar]
  27. H. Nakamura, T. Tokuda, T. Iwasaki, S. Watano, Numerical analysis of particle mixing in a rotating fluidized bed Chemical Eng. Science, 62(11), pp. 3043-3056 (2007) [CrossRef] [Google Scholar]
  28. J. De Wilde, A. de Broqueville, Experimental investigation of a rotating fluidized bed in a static geometry Powder Technology, 183(3), pp. 426-435 (2008) [CrossRef] [Google Scholar]
  29. J. De, Wilde, Gas-solid fluidized beds in vortex chambers, Chemical Engineering and Processing: Process Intensification, 85, pp. 256-290 (2014) [CrossRef] [Google Scholar]
  30. P. Eliaers, J.R. Pati, S. Dutta, J. De, Wilde, Modeling and simulation of biomass drying in vortex chambers Chemical Engineering Science, 123, pp. 648-664 (2015) [CrossRef] [Google Scholar]
  31. S.H., Kumar, D.V.R. Murthy, Minimum superficial fluid velocity in a gas-solid swirled fluidized bed, Chemical Engineering and Processing: Process Intensification, 49(10), pp. 1095-1100 (2010) [Google Scholar]
  32. F. Ouyang, O. Levenspiel, Spiral distributor for fluidized beds, Industrial & Engineering Chemistry Process Design and Development, 25(2), pp. 504-507 (1986) [CrossRef] [Google Scholar]
  33. M.F., Mohideen, S.Md Seri, V. Kumar, V.R. and Raghavan, Experimental studies on a swirling fluidized bed with annular distributor Journal of Applied Sciences, Vol. 11, No. 11, pp. 1980-1986 (2011) [CrossRef] [Google Scholar]
  34. M.F., Mohideen, S.M. Seri, V.R. Raghavan, Fluidization of Geldart Type-D Particles in a Swirling Fluidized Bed, In Applied Mechanics and Materials, Vol. 110, pp. 3720-3727, Trans Tech Publications (2012) [Google Scholar]
  35. M.F., Mohideen, M.F., S.A. Sulaiman, V.R. Raghavan, Hydrodynamics of oil palm frond in a swirling fluidized bed dryer, In Applied Mechanics and Materials, Vol. 117, pp. 1829-1833, Trans Tech Publications (2012) [Google Scholar]
  36. V.I., Kuprianov, R. Kaewklum, K. Sirisomboon, P. Arromdee, S. Chakritthakul, Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk Applied Energy, 87(9), pp. 2899-2906 (2010) [CrossRef] [Google Scholar]
  37. P. Arromdee, V.I. Kuprianov, A comparative study on combustion of sunflower shells in bubbling and swirling fluidized-bed combustors with a cone-shaped bed, Chemical Engineering and Processing: Process Intensification, 62, pp. 26-38 (2012) [CrossRef] [Google Scholar]
  38. V.I., Kuprianov, R. Kaewklum, S. Chakritthakul, Effects of operating conditions and fuel properties on emission performance and combustion efficiency of a swirling fluidized-bed combustor fired with a biomass fuel Energy, 36(4), pp. 2038-2048 (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.