Open Access
Issue
MATEC Web Conf.
Volume 120, 2017
International Conference on Advances in Sustainable Construction Materials & Civil Engineering Systems (ASCMCES-17)
Article Number 04001
Number of page(s) 9
Section Fiber Reinforced Construction Materials
DOI https://doi.org/10.1051/matecconf/201712004001
Published online 09 August 2017
  1. Steel Statistical Yearbook: World Steel Association (2014). [Google Scholar]
  2. Wang G., Y. Wang, and Z. Gao, Use of steel slag as a granular material: volume expansion prediction and usability criteria. Journal of Hazardous Materials, 184 p. 555–560 (2010). [CrossRef] [Google Scholar]
  3. Pellegrino, C., et al., Properties of concretes with black/oxidizing electric arc furnace slag aggregate. Cement and Concrete Composites, 37(1): p. 232–240 (2013). [CrossRef] [Google Scholar]
  4. Juckes, L.M., The volume stability of modern steelmaking slags. Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 112(3 DEC.): p. 177–197 (2003). [Google Scholar]
  5. Goldring, D.C. and L.M. Juckes, Petrology and stability of steel slags. Ironmaking and Steelmaking, 24(6): p. 447–456 (1997). [Google Scholar]
  6. Manso, J.M., J.J. Gonzalez, and J.A. Polanco, Electric arc furnace slag in concrete. Journal of Materials in Civil Engineering, 16(6): p. 639–645 (2004). [CrossRef] [Google Scholar]
  7. López, F.A., A. López-Delgado, and N. Balcázar, Physico-chemical and mineralogical properties of EAF and AOD Slags. Afinidad, 53(461): p. 39–46 (1996). [Google Scholar]
  8. Luxán, M.P., et al., Characteristics of the slags produced in the fusion of scrap steel by EAF. Cement and concrete Research, 30(4): p. 517–519 (2000). [CrossRef] [Google Scholar]
  9. Vazquez Ramonich, E. and M. Barra, Reactivity and expansion of electric arc furnace slag in their application in construction. Materiales de Construcción, 51(263–264): p. 137–148 (2001). [CrossRef] [Google Scholar]
  10. Frías Rojas, M., M.I. Sánchez, and A. Uria, Study of the inestability of black slags from EAF steel industry. Materiales de Construcción, 52(267): p. 79–83 (2002). [CrossRef] [Google Scholar]
  11. Shi, C., Characteristics and cementitious properties of ladle slag fines from steel production. Cement and concrete Research, 2002. 32(3): p. 459–462 (2002). [Google Scholar]
  12. Posch, W., H. Presslinger, and H. Hiebler, Mineralogical evaluation of ladle slags at voestalpine stahl GmbH. Ironmaking and Steelmaking, 29(4): p. 308–312. [Google Scholar]
  13. Setién, J., D. Hernández, and J.J. González, Characterization of ladle furnace basic slag for use as a construction material. Construction and Building Materials, 23(5): p. 1788–1794 (2009). [CrossRef] [Google Scholar]
  14. Pasetto, M. and N. Baldo, Mix design and performance analysis of asphalt concretes with electric arc furnace slag. Construction and Building Materials, 25(8): p. 3458–3468 (2011). [CrossRef] [Google Scholar]
  15. San José, J.T. and A. Uría, Escorias de horno de arco eléctrico en mezclas bituminosas. Arte y Cemento, 1905: p. 122–125 (2001). [Google Scholar]
  16. Skaf, M., et al., Ladle furnace slag in asphalt mixes. Construction and Building Materials, 122: p. 488–495 (2016). [CrossRef] [Google Scholar]
  17. Pasetto, M. and N. Baldo, Fatigue performance of asphalt concretes made with steel slags and modified bituminous binders. International Journal of Pavement Research and Technology, 6(4): p. 294–303 (2013). [Google Scholar]
  18. Pasetto, M. and N. Baldo. Resistance to permanent deformation of base courses asphalt concretes made with RAP aggregate and steel slag. in 12th International Conference on Asphalt Pavements, ISAP 2014. Raleigh, NC: Taylor and Francis - Balkema (2014). [Google Scholar]
  19. Manso, J.M., et al., Ladle Furnace Slag in Construction. J Mater Civil Eng., 17: p. 513–518 (2005). [CrossRef] [Google Scholar]
  20. Bosela, P., et al., Fresh and hardened properties of paving concrete with steel slag aggregate. Propiedades para firmes del hormigón fabricado con áridos siderúrgicos. Carreteras: Revista técnica de la Asociación Española de la Carretera, 4(166): p. 55–66 (2009). [Google Scholar]
  21. Abu-Eishah, S.I., A.S. El-Dieb, and M.S. Bedir, Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Construct Build Mater, 34: p. 249–256 (2012). [CrossRef] [Google Scholar]
  22. Kim, S.W., Y.J. Lee, and K.H. Kim, Bond behavior of RC beams with electric arc furnace oxidizing slag aggregates. J Asian Architect Build Eng., 11(2): p. 359–366 (2012). [CrossRef] [Google Scholar]
  23. Pellegrino, C. and F. Faleschini, Experimental behavior of reinforced concrete beams with electric arc furnace slag as recycled aggregate. ACI Materials Journal, 110(2): p. 197–205 (2013). [Google Scholar]
  24. Anastasiou, E., K. Georgiadis Filikas, and M. Stefanidou, Utilization of fine recycled aggregates in concrete with fly ash and steel slag. Constr Build Mater, 50: p. 154–161 (2014). [CrossRef] [EDP Sciences] [Google Scholar]
  25. Manso, J.M. and J. Setién, Investigación de nuevos usos de las escorias de horno eléctrico de arco (EAF): la oportunidad de los hormigones. Hormigón y Acero, 241: p. 51–57 (2006). [Google Scholar]
  26. Santamaría, A., et al., The use of steelmaking slags and fly ash in structural mortars. Construction and Building Materials, 106: p. 364–373 (2016). [CrossRef] [Google Scholar]
  27. Arribas, I., et al., Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, 90: p. 68–79 (2015). [CrossRef] [Google Scholar]
  28. Arribas, I., et al. Application of steel slag concrete in the foundation slab and basement wall of the Tecnalia kubik building. in 6th European Slag Conference Proceedings. Madrid, Euroslag (2010). [Google Scholar]
  29. Etxeberria, M., et al., Properties of concrete using metallurgical industrial by-products as aggregates. Construction and Building Materials. 24(9): p. 1594–1600 (2010). [CrossRef] [Google Scholar]
  30. Manso, J.M., et al., Design and elaboration of concrete mixtures using steelmaking slags. ACI Materials Journal, 108(6): p. 673–681 (2011). [Google Scholar]
  31. Papayianni, I. and E. Anastasiou, Concrete incorporating highcalcium fly ash and EAF slag aggregates. Magazine of Concrete Research, 63(8): p. 597–604 (2011). [CrossRef] [Google Scholar]
  32. Polanco, J.A., et al., Strength and durability of concrete made with electric steelmaking slag. ACI Materials Journal, 108(2): p. 196–203 (2011). [Google Scholar]
  33. San-José, J.T., et al., The performance of steel-making slag concretes in the hardened state. Materials and Design, 60: p. 612–619 (2014). [CrossRef] [Google Scholar]
  34. Arribas, I., et al., Durability studies on steelmaking slag concretes. Materials and Design, 63: p. 168–176 (2014). [CrossRef] [Google Scholar]
  35. Anastasiou, E.K., I. Papayianni, and M. Papachristoforou, Behavior of self compacting concrete containing ladle furnace slag and steel fiber reinforcement. Materials and Design, 59: p. 454–460 (2014). [CrossRef] [Google Scholar]
  36. Tomasiello, S. and M. Felitti, EAF slag in self-compacting concretes. Facta universitatis - series: Architecture and Civil Engineering, 8(1): p. 13–21 (2010). [CrossRef] [Google Scholar]
  37. Santamaría, A., et al., Self-compactin concrete incorporating electric arc-furnace steelmaking slag as aggregate. Materials and Design, 115: p. 179–193 (2017). [CrossRef] [Google Scholar]
  38. Akin Altun, I. and I. Yilmaz, Study on steel furnace slags with high MgO as additive in Portland cement. Cement and Concrete Research, 32(8): p. 1247–1249 (2002). [CrossRef] [Google Scholar]
  39. Ortega-López, V., et al., The long-term accelerated expansion of various ladle-furnace basic slags and their soil-stabilization applications. Construction and Building Materials, 68: p. 455–464 (2014). [CrossRef] [Google Scholar]
  40. Manso, J.M., et al., The use of ladle furnace slag in soil stabilization. Construction and Building Materials, 40: p. 126–134 (2013). [CrossRef] [Google Scholar]
  41. Montenegro, J., et al., Ladle furnace slag in the construction of embankments: expansive behavior. J Mater Civil Eng., 25(8): p. 972–979 (2013). [CrossRef] [Google Scholar]
  42. Bäverman, C., et al., Serial batch test performed on municipal solid waste incineration bottom ash and electric arc furnace slag, in combination with computer modelling. Waste management and Research, 15(1): p. 55–71 (1997). [CrossRef] [Google Scholar]
  43. Sasamoto, H., et al., Development of fishing block using EAF refining slag. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 89(4): p. 461–465 (2003). [CrossRef] [Google Scholar]
  44. Pellegrino, C. and V. Gaddo, Mechanical and durability characteristics of concrete containing EAF slag as aggregate. Cement and Concrete Composites, 31(9): p. 663–671 (2009). [CrossRef] [Google Scholar]
  45. EN Euronorm. European Committee for Standardization: Rue de Stassart, 36. Belgium–1050 Brussels. [Google Scholar]
  46. CEN. European Committee for Standardization. rue de Stassart, 36. Brussels B–1050. [Google Scholar]
  47. Turmo, J., et al., Study of the shear behaviour of fiber reinforced concrete beams. Materiales de Construcción, 58(292): p. 5–13 (2008). [Google Scholar]
  48. Yazici, S., G. Inan, and V. Tabak, Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21(6): p. 1250–1253 (2007). [CrossRef] [Google Scholar]
  49. Bemal, S., et al., Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete. Materiales de Construccion, 59(293): p. 53–62 (2009). [Google Scholar]
  50. Instrucción para realización de obras de hormigón estructural, M.d. Fomento, Editor., Comisión Permanente de Hormigón: Madrid (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.