Open Access
Issue
MATEC Web Conf.
Volume 113, 2017
12th International Scientific-Technical Conference on Electromechanics and Robotics “Zavalishin’s Readings” - 2017
Article Number 02012
Number of page(s) 5
Section Robotics and Automation
DOI https://doi.org/10.1051/matecconf/201711302012
Published online 20 June 2017
  1. V.N. Kalinin, B.V. Sokolov, International Journal of Difference Equations, 21(5) (1985) [Google Scholar]
  2. V.N. Kalinin, B.V. Sokolov, Automation and Remote Control, 48(1-2) (1987) [Google Scholar]
  3. I.N. Zimin, Yu.P. Ivanilov, Zh. Vychisl. Mat. Mat. Fiz., 11(3) (1971) [Google Scholar]
  4. M.Y. Okhtilev, B.V. Sokolov, R.M. Yusupov, Intellectual Technology of Complex-Technical-Object Structural-Dynamic Monitoring and Control (Moscow, “Nauka”, 2014) [Google Scholar]
  5. D. Ivanov, B. Sokolov, International Journal of Production Research, 51(9) (2013) [Google Scholar]
  6. D. Ivanov, B. Sokolov, Journal of Scheduling, 15(2) (2012) [CrossRef] [Google Scholar]
  7. M. Athans, P.L. Falb. Optimal control: An introduction to the theory and its applications (New York San Francisco, CA, Sidney, NSW: McGraw-Hill 1966). [Google Scholar]
  8. F. Werner, Y. Sotskov (Eds.), Sequencing and Scheduling with Inaccurate Data. (Nova Publishers, 2014) [Google Scholar]
  9. E. Khmelnitsky, K. Kogan, O. Maimom, International Journal of Production Research, 10(35) (1997) [Google Scholar]
  10. J.G. Kimemia, T.I. Gershwin, IIE Transactions, 15 (1983) [Google Scholar]
  11. K. Kogan, E. Khmelnitsky, International Journal of Production Research, 3 (1996) [Google Scholar]
  12. K. Kogan, E. Khmelnitsky. Scheduling: controlbased theory and polynomial-time algorithms. (Dordrecht, Kluwer 2000) [CrossRef] [Google Scholar]
  13. E.B. Lee, L. Markus, Foundations of optimal control theory. (Wiley & Sons, New York 1967) [Google Scholar]
  14. D. Tabak, B.C. Kuo, Optimal control by mathematical programming. (Prentice Hall, NY 1971) [Google Scholar]
  15. H. Ye, R. Liu, Transportation Research Part B: Methodological, 93 (Part A) (2016) [Google Scholar]
  16. F.L. Chernousko, A.A. Lyubushin, Optimal Control Applications and Methods, 3(2) (1982) [Google Scholar]
  17. A. Alabyan, V. Zelentsov, I. Krylenko, S. Potryasaev, B. Sokolov, R. Yusupov, SPIIRAS Proceedings, 41(4) (2015) [Google Scholar]
  18. I.A. Krylov, F.L. Chernousko, Zh. Vychisl. Mat. Mat. Fiz., 12(1) (1972) [Google Scholar]
  19. F. Werner, Y. Sotskov (Eds.), Sequencing and Scheduling with Inaccurate Data. (Nova Publishers, 2014) [Google Scholar]
  20. E. Khmelnitsky, K. Kogan, O. Maimom, International Journal of Production Research, 10(35) (1997) [Google Scholar]
  21. J.G. Kimemia, T.I. Gershwin, IIE Transactions, 15 (1983) [Google Scholar]
  22. K. Kogan, E. Khmelnitsky, International Journal of Production Research, 3 (1996) [Google Scholar]
  23. K. Kogan, E. Khmelnitsky. Scheduling: controlbased theory and polynomial-time algorithms. (Dordrecht, Kluwer 2000) [CrossRef] [Google Scholar]
  24. E.B. Lee, L. Markus, Foundations of optimal control theory. (Wiley & Sons, New York 1967) [Google Scholar]
  25. D. Tabak, B.C. Kuo, Optimal control by mathematical programming. (Prentice Hall, NY 1971) [Google Scholar]
  26. H. Ye, R. Liu, Transportation Research Part B: Methodological, 93 (Part A) (2016) [Google Scholar]
  27. F.L. Chernousko, A.A. Lyubushin, Optimal Control Applications and Methods, 3(2) (1982) [Google Scholar]
  28. A. Alabyan, V. Zelentsov, I. Krylenko, S. Potryasaev, B. Sokolov, R. Yusupov, SPIIRAS Proceedings, 41(4) (2015) [Google Scholar]
  29. I.A. Krylov, F.L. Chernousko, Zh. Vychisl. Mat. Mat. Fiz., 12(1) (1972) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.