Open Access
Issue
MATEC Web Conf.
Volume 111, 2017
Fluids and Chemical Engineering Conference (FluidsChE 2017)
Article Number 01009
Number of page(s) 5
Section Advances in Fluids Flow and Mechanics
DOI https://doi.org/10.1051/matecconf/201711101009
Published online 20 June 2017
  1. Fiorini, G.S. and D.T. Chiu, Disposable microfluidic devices: Fabrication, function, and application. BioTechniques 2005. 38: p. 429–446. [Google Scholar]
  2. deMello, A.J., Control and detection of chemical reactions in microfluidic systems. Nature, 2006. 442(7101): p. 394–402. [Google Scholar]
  3. Truter, L.A., et al., The application of palladium and zeolite incorporated chipbased microreactors. Applied Catalysis A: General, 2016. 515: p. 72–82. [Google Scholar]
  4. Ying, X., et al., Efficient Fischer–Tropsch microreactor with innovative aluminizing pretreatment on stainless steel substrate for Co/Al2O3 catalyst coating. Fuel Processing Technology, 2016. 143: p. 51–59. [Google Scholar]
  5. Morgan, A.J.L., et al., Efficient microwave heating of microfluidic systems. Sensors and Actuators B: Chemical, 2013. 181: p. 904–909. [Google Scholar]
  6. Lee, S.H. and I. Mudawar, Investigation of flow boiling in large micro-channel heat exchangers in a refrigeration loop for space applications. International Journal of Heat and Mass Transfer, 2016. 97: p. 110–129. [Google Scholar]
  7. Nam, Y., M. Kim, and T. Kim, Pneumatically controlled multi-level microchannel for separation and extraction of microparticles. Sensors and Actuators B: Chemical, 2014. 190: p. 86–92. [Google Scholar]
  8. Guo, L., et al., Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends in Food Science & Technology, 2015. 46(2, Part A): p. 252–263. [Google Scholar]
  9. Muijlwijk, K., C. Berton-Carabin, and K. Schroën, Cross-flow microfluidic emulsification from a food perspective. Trends in Food Science & Technology, 2016. 49: p. 51–63. [Google Scholar]
  10. Boussommier-Calleja, A., et al., Microfluidics: A new tool for modeling cancer–immune interactions. Trends in Cancer, 2016. 2(1): p. 6–19. [Google Scholar]
  11. Kozminsky, M., Y. Wang, and S. Nagrath, The incorporation of microfluidics into circulating tumor cell isolation for clinical applications. Current Opinion in Chemical Engineering, 2016. 11: p. 59–66. [Google Scholar]
  12. Tay, A., et al., Advances in microfluidics in combating infectious diseases. Biotechnology Advances, 2016. 34(4): p. 404–421. [CrossRef] [Google Scholar]
  13. Grünberger, A., W. Wiechert, and D. Kohlheyer, Single-cell microfluidics: opportunity for bioprocess development. Current Opinion in Biotechnology, 2014. 29: p. 15–23. [Google Scholar]
  14. Zhu, Y. and Q. Fang, Analytical detection techniques for droplet microfluidics—A review. Analytica Chimica Acta, 2013. 787: p. 24–35. [Google Scholar]
  15. Shah, R.K., et al., Designer emulsions using microfluidics. Materials Today, 2008. 11(4): p. 18–27. [Google Scholar]
  16. T., S., et al., Microstructure grooves with a width of less than 50 [mu]m cut with ground hard metal micro end mills. Precision Engineering, 1999. 23: p. 229–235. [Google Scholar]
  17. Rossier, J.S., et al., Plasma etched polymer microelectrochemical systems. Lab Chip, 2002. 2(3): p. 145–50. [Google Scholar]
  18. Martynova, L., et al., Fabrication of plastic microfluid channels by imprinting methods. Analytical Chemistry, 1997. 69(23): p. 4783–9. [Google Scholar]
  19. Xu, J., et al., Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry, 2000. 72(8): p. 1930–3. [Google Scholar]
  20. Rodriguez, I., et al., Rapid prototyping of glass microchannels. Analytica Chimica Acta, 2003. 496(1–2): p. 205–215. [Google Scholar]
  21. Tsao, C.-W., et al., Rapid polymer microchannel fabrication by hot roller embossing process. Microsystem Technologies, 2012. 18(6): p. 713–722. [Google Scholar]
  22. Çetin, B., A.K. Koska, and M. Erdal, Warpage characterization of microchannels fabricated by injection molding. Journal of Micro and Nano-Manufacturing, 2015. 3(2): p. 021005–021005. [Google Scholar]
  23. Friend, J. and L. Yeo, Fabrication of Microfluidic Devices using Polydimethylsiloxane. Biomicrofluidics, 2010. 4. [Google Scholar]
  24. Martin, C.R. and I.A. Aksay, Microchannel molding: A soft lithography-inspired approach to micrometer-scale patterning. Journal of Materials Research, 2005. 20(8): p. 1995–2003. [Google Scholar]
  25. Faustino, V., et al., Biomedical microfluidic devices by using low-cost fabrication techniques: A review. Journal of Biomechanics. [Google Scholar]
  26. Wu, H., et al., Fabrication of complex threedimensional microchannel systems in PDMS. J Am Chem Soc, 2003. 125(2): p. 554–9. [CrossRef] [Google Scholar]
  27. Becker, H. and L.E. Locascio, Polymer microfluidic devices. Talanta, 2002. 56(2): p. 267–287. [Google Scholar]
  28. Bartholomeusz, D.A., R.W. Boutté, and J.D. Andrade, Xurography: rapid prototyping of microstructures using a cutting plotter. IEEE/ASME Journal of Microelectromechanical Systems, 2005. 14(6): p. 1364–1374. [Google Scholar]
  29. Martínez-López, J., et al., Xurography as a rapid fabrication alternative for point-of-care devices: Assessment of passive micromixers. Sensors, 2016. 16(5): p. 705. [Google Scholar]
  30. Neuville, A., et al., Xurography for microfluidics on a reactive solid. Lab on a Chip, 2017. 17(2): p. 293–303. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.