Issue |
MATEC Web Conf.
Volume 111, 2017
Fluids and Chemical Engineering Conference (FluidsChE 2017)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 5 | |
Section | Advances in Fluids Flow and Mechanics | |
DOI | https://doi.org/10.1051/matecconf/201711101009 | |
Published online | 20 June 2017 |
Rapid Prototyping of Microfluidics Devices using Xurograhy Method
Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Lebuhraya Tun Razak 26300 Kuantan, Pahang, Malaysia
* Corresponding author: fionalingwm@gmail.com
Rapid prototyping of microchannel gain lots of attention from researchers along with the rapid development of microfluidic technology. The conventional methods carried few disadvantages such as high cost, time consuming, required high operating pressure and temperature and involve expertise in operating the equipment. In this work, new method adapting xurography method is introduced to replace the conventional method of fabrication of microchannels. The novelty in this study is replacing the adhesion film with clear plastic film which was used to cut the design of the microchannel as the material is more suitable for fabricating more complex microchannel design. The microchannel was then mold using polymethyldisiloxane (PDMS) and bonded with a clean glass to produce a close microchannel. The microchannel produced had a clean edge indicating good master mold was produced using the cutting plotter and the bonding between the PDMS and glass was good where no leakage was observed. The materials used in this method is cheap and the total time consumed is less than 5 hours where this method is suitable for rapid prototyping of microchannel.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.