Open Access
MATEC Web Conf.
Volume 108, 2017
2017 International Conference on Mechanical, Aeronautical and Automotive Engineering (ICMAA 2017)
Article Number 15006
Number of page(s) 12
Section Image Processing and Information System
Published online 31 May 2017
  1. Flores P, Ambrósio J, Claro JP. Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody System Dynamics. 2004;12:47–74. [Google Scholar]
  2. Hamrock BJ, Schmid SR, Jacobson BO. Fundamentals of fluid film lubrication: CRC press; 2004. [Google Scholar]
  3. Flores P, Lankarani HM, Ambrósio J, Claro JCP. Modelling lubricated revolute joints in multibody mechanical systems. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2004;218:183–90. [CrossRef] [Google Scholar]
  4. Li DF, Rohde SM, Ezzat HA. An Automotive Piston Lubrication Model. A S L E Transactions. 1983;26:151–60. [CrossRef] [Google Scholar]
  5. Zhu D, Cheng HS, Arai T, Hamai K. A numerical analysis for piston skirts in mixed lubrication—Part I: Basic modeling. Journal of tribology. 1992;114:553–62. [CrossRef] [Google Scholar]
  6. Zhu D, Hu Y-Z, Cheng HS, Arai T, Hamai K. A Numerical Analysis for Piston Skirts in Mixed Lubrication: Part II—Deformation Considerations. Journal of tribology. 1993;115:125–33. [CrossRef] [Google Scholar]
  7. Keribar R, Dursunkaya Z. A comprehensive model of piston skirt lubrication. SAE Technical Paper; 1992. [Google Scholar]
  8. Wong VW, Tian T, Lang H, Ryan JP, Sekiya Y, Kobayashi Y, et al. A numerical model of piston secondary motion and piston slap in partially flooded elastohydrodynamic skirt lubrication. SAE Technical Paper; 1994. [Google Scholar]
  9. Liu K, Xie Y, Gui C. A comprehensive study of the friction and dynamic motion of the piston assembly. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 1998;212:221–6. [CrossRef] [Google Scholar]
  10. Patir N, Cheng H. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. Journal of Tribology. 1978;100:12–7. [Google Scholar]
  11. Patir N, Cheng H. Application of average flow model to lubrication between rough sliding surfaces. Journal of Tribology. 1979;101:220–9. [Google Scholar]
  12. Flores P, Ambrósio J, Claro JCP, Lankarani H, Koshy C. Lubricated revolute joints in rigid multibody systems. Nonlinear Dynamics. 2009;56:277–95. [CrossRef] [Google Scholar]
  13. Daniel GB, Cavalca KL. Analysis of the dynamics of a slider–crank mechanism with hydrodynamic lubrication in the connecting rod–slider joint clearance. Mechanism & Machine Theory. 2011;46:1434–52. [CrossRef] [Google Scholar]
  14. Machado M, Costa J, Seabra E, Flores P. The effect of the lubricated revolute joint parameters and hydrodynamic force models on the dynamic response of planar multibody systems. Nonlinear Dynamics. 2012;69:635–54. [CrossRef] [Google Scholar]
  15. Zhao B, Zhou K, Xie Y-B. A new numerical method for planar multibody system with mixed lubricated revolute joint. International Journal of Mechanical Sciences. 2016;113:105–19. [CrossRef] [Google Scholar]
  16. Zhao B, Zhang Z-N, Fang C-c, Dai X-D, Xie Y-B. Modeling and analysis of planar multibody system with mixed lubricated revolute joint. Tribology International. 2016;98:229–41. [CrossRef] [Google Scholar]
  17. Wang N, Chang C. An application of Newton’s method to the lubrication analysis of air-lubricated bearings. Tribology transactions. 1999;42:419–24. [CrossRef] [Google Scholar]
  18. Wu C, Zheng L. An Average Reynolds Equation for Partial Film Lubrication With a Contact Factor. Journal of Tribology. 1989;111:188–91. [Google Scholar]
  19. Meng X, Xie Y. A new numerical analysis for piston skirt–liner system lubrication considering the effects of connecting rod inertia. Tribology International. 2012;47:235–43. [CrossRef] [Google Scholar]
  20. Meng X, Ning L, Xie Y, Wong VW. Effects of the connecting-rod-related design parameters on the piston dynamics and the skirt–liner lubrication. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2012:0954407012464025. [Google Scholar]
  21. Zhao B, Dai X-D, Zhang Z-N, Xie Y-B. A new numerical method for piston dynamics and lubrication analysis. Tribology International. 2016;94:395–408. [Google Scholar]
  22. He Z, Xie W, Zhang G, Hong Z, Zhang J. Piston dynamic characteristics analyses based on FEM method Part I: Effected by piston skirt parameters. Advances in Engineering Software. 2014;75:68–85. [Google Scholar]
  23. Pinkus O, Sternlicht B. Theory of hydrodynamic lubrication. New York: McGraw-Hill; 1961. [Google Scholar]
  24. Greenwood J, Tripp J. The contact of two nominally flat rough surfaces. Proceedings of the institution of mechanical engineers. 1970;185:625–33. [Google Scholar]
  25. Akalin O, Newaz GM. Piston ring-cylinder bore friction modeling in mixed lubrication regime: Part I—Analytical results. Journal of tribology. 2001;123:211–8. [CrossRef] [Google Scholar]
  26. Hu Y, Cheng HS, Arai T, Kobayashi Y, Aoyama S. Numerical simulation of piston ring in mixed lubrication—a nonaxisymmetrical analysis. Journal of tribology. 1994;116:470–8. [CrossRef] [Google Scholar]
  27. Shabana AA. Dynamics of multibody systems: Cambridge university press; 2013. [CrossRef] [Google Scholar]
  28. Nikravesh PE. Computer-aided analysis of mechanical systems: Prentice-hall Englewood Cliffs; 1988. [Google Scholar]
  29. de Jalón JG, Bayo E. Kinematic and dynamic simulation of multibody systems. Mechanical Engineering Series, Springer, New York. 1994. [Google Scholar]
  30. Muvengei O, Kihiu J, Ikua B. Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mechanism and Machine Theory. 2012;53:30–49. [CrossRef] [Google Scholar]
  31. Ravn P. A Continuous Analysis Method for Planar Multibody Systems with Joint Clearance. Multibody System Dynamics. 1998;2:1–24. [CrossRef] [Google Scholar]
  32. Muvengei O, Kihiu J, Ikua B. Dynamic analysis of planar rigid-body mechanical systems with two-clearance revolute joints. Nonlinear Dynamics. 2013;73:259–73. [CrossRef] [Google Scholar]
  33. Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems. Computer methods in applied mechanics and engineering. 1972;1:1–16. [Google Scholar]
  34. Flores P, Machado M, Seabra E, da Silva MT. A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. Journal of computational and nonlinear dynamics. 2011;6:011019. [CrossRef] [Google Scholar]
  35. Kim J, Chung I, Lee B. Determination of the feedback coefficients for the constraint violation stabilization method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 1990;204:233–42. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.