Open Access
MATEC Web Conf.
Volume 106, 2017
International Science Conference SPbWOSCE-2016 “SMART City”
Article Number 04011
Number of page(s) 7
Section 4 Applied Mechanics in Construction and Material Science
Published online 23 May 2017
  1. A.L. Gol’Denveizer. Theory of Elastic Thin Shells: Solid and Structural Mechanics. Vol. 2. Elsevier, 2014. [Google Scholar]
  2. Benson D. J., et al. A large deformation, rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and Engineering 200.13 (2011): 1367–1378. [CrossRef] [Google Scholar]
  3. A. Tomás, P. Martí. Shape and size optimisation of concrete shells. Engineering Structures 32.6 (2010): 1650–1658. [CrossRef] [Google Scholar]
  4. G. Gerard. A critical strain approach to creep buckling of plates and shells. Journal of the Aerospace Sciences (2012). [Google Scholar]
  5. H. Altenbach, K. Naumenko. Shear correction factors in creep-damage analysis of beams, plates and shells.” JSME International Journal Series A Solid Mechanics and Material Engineering 45.1 (2002): 77–83. [CrossRef] [Google Scholar]
  6. J. Bockhold, Y. S. Petryna. Creep influence on buckling resistance of reinforced concrete shells. Computers & structures 86.7 (2008): 702–713. [CrossRef] [Google Scholar]
  7. A. E. Gemma The creep deformation of symmetrically loaded circular cylindrical shells. Journal of the Aerospace Sciences (2012). [Google Scholar]
  8. J. T. Boyle, J. Spence. Stress analysis for creep. Elsevier, 2013. [Google Scholar]
  9. A.G. Tamrazyan, The mechanics of concrete creep: monograph (Moscow, 2012) [Google Scholar]
  10. Diab Hesham, and Zhishen Wu. A linear viscoelastic model for interfacial long-term behavior of FRP–concrete interface. Composites Part B: Engineering 39.4 (2008): 722–730. [CrossRef] [Google Scholar]
  11. Creus Guillermo J. Viscoelasticity—basic theory and applications to concrete structures. Vol. 16. Springer Science & Business Media, 2012. [Google Scholar]
  12. Hattel J. H., and Jesper Thorborg. A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete. Applied Mathematical Modelling 27.1 (2003): 1–26. [CrossRef] [Google Scholar]
  13. L.R. Mailyan, A.S. Chepurnenko, A. Ivanov, Calculation of prestressed concrete cylinder considering creep of concrete, Procedia Engineering, 165 (2016). pp. 1853–1857 [CrossRef] [Google Scholar]
  14. V.I. Andreev, A.S. Chepurnenko, B.M. Yazyev. Energy method in the calculation stability of compressed polymer rods considering creep, Advanced Materials Research, 1004-1005 (2014). pp. 257–260. [Google Scholar]
  15. V.I. Andreev, B.M. Yazyev, A.S. Chepurnenko, On the Bending of a Thin Plate at Nonlinear Creep, Advanced Materials Research, 900 (2014). pp. 707–710. [CrossRef] [Google Scholar]
  16. A.S. Chepurnenko, A.V. Saibel, B.M. Yazyev, Determination of the Breaking Load for Concrete Slabs Based on the Deformation Theory of Plasticity, Procedia Engineering, 150 (2016). pp. 1694–1700. [CrossRef] [Google Scholar]
  17. A.S. Chepurnenko, B.M. Yazyev, A.A. Savchenko, Calculation for the Circular Plate on Creep Considering Geometric Nonlinearity, Procedia Engineering, 150 (2016) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.