Open Access
MATEC Web Conf.
Volume 104, 2017
2017 2nd International Conference on Mechanical, Manufacturing, Modeling and Mechatronics (IC4M 2017) – 2017 2nd International Conference on Design, Engineering and Science (ICDES 2017)
Article Number 02007
Number of page(s) 9
Section Chapter 2: Engineering Simulation, Modeling and Mechatronics
Published online 14 April 2017
  1. J. Zhou, B. Duan, J. Huang, Effect and compensation for servo systems using LuGre friction model, Control Theor. App. 25(6) (2008) 990–994. [Google Scholar]
  2. S. K. Shome, M. Prakash, S. Pradhan, Robust dahl model based Sliding Mode Control for micro/nano positioning applications, 11th IEEE India Conference: Emerging Trends and Innovation in Technology, February 3, 2015. [Google Scholar]
  3. H. Xie, Z. Liu, H. Yang, Advancing control for shield tunneling machine by Backstepping design with lugre friction model, Math. Probl. Eng. ten pages, 2014. [Google Scholar]
  4. I. Redaelli, C. di Prisco, D. Vescovi, A visco-elasto-plastic model for granular materials under simple shear conditions, Int. J. Numer. Anal. Methods Geomech. 40(1) (2016) 80–104. [CrossRef] [Google Scholar]
  5. V. Lampaert, J. Swevers, F. Al-Bender, Modification of the Leuven integrated friction model structure, IEEE T. Autom. Control 47(4) (2002) 683–687. [CrossRef] [Google Scholar]
  6. I. Nilkhamhang, A. Sano, Robust adaptive friction compensation using linearly-parameterized GMS model, 9th European Control Conference, 2015, 1314–1319. [Google Scholar]
  7. W. Tan, X. Li, H. Xiang, Research on compensation of torque ripple in servo system, J. Mech. Eng. 47(12) (2011) 1–6. [CrossRef] [Google Scholar]
  8. Y. Wang, Z. He, Friction compensation for servo systems, Electric Mach. Control 17(8) (2013) 107–112. [Google Scholar]
  9. S. Yang, M. Zeng, New repetitive adaptive friction compensation scheme in high-precise servo system, J. Southeast U. 36(SUPPL) (2006) 74–48. [Google Scholar]
  10. Y. Wu, D. Ma, J. Yao, Application of adaptive robust control in mechatronic servo system based on modified LuGre model, J. Mech. Eng. 50(22) (2014) 207–212. [CrossRef] [Google Scholar]
  11. Q. Wu, X. Wang, F. Du, Torque transmission characteristics and friction compensation for a tendon-sheath actuation system in pull-pull configuration, J. Mech. Eng. 51(5) (2015) 22–29. [CrossRef] [Google Scholar]
  12. B. Feng, X. S. Mei, J. Yang, Adaptive configuration method of friction compensation pulse characteristic parameters, J. Shanghai Jiaotong U. 58(5) (2014) 713–718. [Google Scholar]
  13. M. Ruderman, Tracking control of motor drives using feedforward friction observer, IEEE T. Ind. Electron. 61(7) (2014) 3727–3735. [CrossRef] [Google Scholar]
  14. T. S. Aung, R. Kikuuwe, M. Yamamoto, Friction compensation of geared actuators with high presliding stiffness, J. Dyn. Syst. Meas. Control, T. ASME 137(1) (2015) 8 pages. [Google Scholar]
  15. L. X. Wang, J. M. Mendel, Fuzzy basis functions, universal approximation, and orthogonal least-squares learning, IEEE T. Neural Net. 3(5) (1992) 807–814. [CrossRef] [Google Scholar]
  16. J. P. Yu, B. Chen, H. S. Yu, Adaptive fuzzy backstepping position tracking control for permanent magnet synchronous motor, Control and Decision, 25(10) (2010) 1547–1551. [Google Scholar]
  17. H. Chaoui, P. Sicard, Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction, IEEE T. Ind. Electron. 59(2) (2010) 1123–1133. [CrossRef] [Google Scholar]
  18. X. Guo, Q. Wang, G. Li, Adaptive fuzzy control for permanent magnet spherical motor based on friction compensation, P. Chin. Soc. Electrical Eng. 31(15) (2011) 75–81. [Google Scholar]
  19. Y. F. Wang, T. Y. Chai, Adaptive fuzzy control method for dynamic friction compensation, P. CSEE, 25(2) (2005) 139–143. [Google Scholar]
  20. Y. F. Wang, D. H. Wang, T. Y. Chai, Extraction and adaptation of fuzzy rules for friction modeling and control compensation, IEEE t. fuzzy syst. 19(4) (2011) 682–693. [CrossRef] [Google Scholar]
  21. L. Lu, B. Yao, Q. Wang, Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model, Automatica, 45(12) (2009) 2890–2896. [CrossRef] [Google Scholar]
  22. Q. Liang, J. Zhang, Y. Wang, Adaptive backstepping friction compensation control based on modified LuGre model, Small Special Electrical Mach. (11) (2011) 67–69. [Google Scholar]
  23. D. K. Wang, Backstepping based adaptive fuzzy control and its application, J. Shengyang Normal U. 31(2) (2013) 192–195. [Google Scholar]
  24. H. B. Zhao, X. H. Zhou, Backstepping adaptive control of dual-motor driving servo system, Control Theor. Appl. 28(5) (2011) 745–751. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.