Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 06018
Number of page(s) 9
Section Water and Wastewater Treatment Process
DOI https://doi.org/10.1051/matecconf/201710306018
Published online 05 April 2017
  1. S.C. Reed, Nat. systems for waste management and treatment, 2nd ed. New York:McGraw-Hill,(1995) [Google Scholar]
  2. S. Manahan, Fundamentals of Enviro. Chem., 3rd ed. Boca Raton, Florida:Taylor&Francis/CRC Press,(2009) [Google Scholar]
  3. G.K. Morse, S.W. Brett, J.A. Guy andJ.N.U. Lester, Review: Phosphorusremoval and recovery technologies. The Sci. of the Tot. Env., 212, 69–81,(1998) [CrossRef] [Google Scholar]
  4. Y.Z. Li, C.J. Liu, Z.K. Luan, X.J. Peng, C.L. Zhu, Z.Y. Chen, Z.G. Zhang, J.H. Fan and Z.P. Jia, Phosphate RemovalFromAqueous Solution UsingRaw and ActivatedRedMud and Fly Ash. J. Hazard. Mater. 137, 374–383, (2006) [CrossRef] [Google Scholar]
  5. L. Johansson-Westholm, Substrates for PhosphorusRemoval–potentialBenefits for Onsite WastewaterTreatement, Water Resources. 40(1), 23–36. (2006) [Google Scholar]
  6. I. Blanco, P. Molle, L. Miera, G. Ansola, Basic OxygenFurnaceSteelSlagAggregates for PhosphorusTreatment : Evaluation of ItsPotential Use as a Substrate in ConstructedWetlands, Water Research, 89, 355–365 (2016) [Google Scholar]
  7. C. Barca, C. Gerente, D. Meyer, F. Chazarenc, Y. Andres, Phosphate RemovalfromSynthetic and Real WastewaterUsingSteelSlagsProduced in Europe, Water Resources. 89, 1–6 (2012) [Google Scholar]
  8. C. Barca, S. Troesch, D. Meyer, P. Drissen, Y. Andres, F. Chazarenc, SteelSlagFilters to Upgrade PhosphorusRemoval in ConstructedWetlands: TwoYears of Field Experiments, Env. Sci. Tech., 47, 549–556 (2013) [CrossRef] [Google Scholar]
  9. C. Barca, D. Meyer, M. Liira, P. Drissen, Y. Coemau, Y. Andres, F. Chazarenc, SteelSlagFilters to Upgrade PhosphorusRemoval in WastewaterTreatment Plants: RemovalMechanisms and Performance, Eco. Eng., 68, 214–222 (2014) [CrossRef] [Google Scholar]
  10. R. Hamdan, D. Mara, Study of In-filterPhosphorusRemovalMechanisms in an Aerated Blast FurnaceSlag, Int. J. of Research in Eng. and Tech., 2(8), 130–136 (2013) [Google Scholar]
  11. C. Han, Z. Wang, W. Yang, Q. Wu, H. Yang, X. Xue, Effects of pH on PhosphorusRemovalCapacities of Basic OxygenFurnaceSlag, Eco. Eng., 89,1–6 (2016) [CrossRef] [Google Scholar]
  12. P. Wifert, P.S. Kumar, L. Korving, G. Witkamp, M.C.M. Loodsrecht, The Relevance of Phosphorus and IronChemistry to the Recovery of PhosphorusfromWastewater: A Review, Env. Sci. and Tech., 49, 99400–9414 (2015) [Google Scholar]
  13. M. Scholz, WetlandsSystems to Control UrbanRunoff, Elsevier, Oxford, United Kingdom, (2006) [Google Scholar]
  14. S.E. Johnson, R.H. Loeppert, Role of OrganicAcids I Phosphate MobilizationfromIronOxides, SoilSci. Soc. Am. J., 70, 222–234 (2006) [CrossRef] [Google Scholar]
  15. B. Zhong, R. Stanforth, S. Wu, J.P. Chen, Proton Interaction in Phosphate Adsorption onto Goethite, J. of ColloidalInterfacialSci., 308, 40–48 (2007) [Google Scholar]
  16. A. Klimeski, W.J. Chardon, E. Turtola, R. Uusitola, Potential and Limitations of Phosphate Retention Media in Water Protection: A Process-basedReview of Laboratory and Field-scale Tests, Agr. and Food Sci., 21, 206–223 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.