Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 06010
Number of page(s) 9
Section Water and Wastewater Treatment Process
DOI https://doi.org/10.1051/matecconf/201710306010
Published online 05 April 2017
  1. Y. Wu, H. Hu, Y. Yu, T. Zhang and S. Zhu, Microalgal species for sustainable biomass lipid production using wastewater as resource: A review, Renewable and Sustainable Energy, 336, 75–688, (2014) [Google Scholar]
  2. A. Richmond, Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd; (2004) [Google Scholar]
  3. J. P. Maity, J. Bundschuh, C.-Y. Chen, and P. Bhattacharya., Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives - A mini review, Energy, 78, 104–113, (2014) [CrossRef] [Google Scholar]
  4. D. Hanelt, K. Bischof and K. Dunton, Life strategy, eco-physiology and ecology of seaweeds in polar waters, Reviews in Environmental Science and Biotechnology 2007, 6(1), 95–126, (2007) [Google Scholar]
  5. A. Al-Darmaki, L. Govindrajan, S. Talebi, S. Al-Rajhi, T. Al-Barwani, Z. Al-Bulashi, Cultivation and characterization of microalgae for wastewater treatment. Proceedings of the world congress on Eng. 1,(2012) [Google Scholar]
  6. D. S. Shekhawat, A. Bhatnagar, M. Bhatnagar, and J. Panwar, Potential of Treated Dairy Waste Water for the Cultivation of Algae and Waste Water Treatment by Algae, J. Environ. Res. Technol., 2, 101–104, (2012) [Google Scholar]
  7. A. Worku and O. Sahu, Reduction of Heavy Metal and Hardness from Ground Water by Algae, J. Appl. Environ. Microbiol., 2(3), 86–89 (2014) [Google Scholar]
  8. X.E. Yang, X. Wu, H.L. Hao, and Z.L. He, Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B. 9(3), 197–209, (2009) [CrossRef] [PubMed] [Google Scholar]
  9. Onet, C., Characteristics of the Untreated Wastewater Produced By Food Industry Vol Xv, 709–714, University of Oradea- Faculty of Environmental Protection, (2010) [Google Scholar]
  10. E. Sroka, K. Wladysław, and B. Jolanta, Biological Treatment of Meat Industry Wastewater, Desalination 162, 85–91, (2004) [CrossRef] [Google Scholar]
  11. C. F. Bustillo-Lecompte and M. Mehrvar, Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances, J. of Environmental Management, 161, 287–302, (2015) [CrossRef] [PubMed] [Google Scholar]
  12. W. Qasim and A. V. Mane, Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques, Water Resources and Industry, 4, 1–12, (2013) [CrossRef] [Google Scholar]
  13. J. Liu, Z. Sun, and H. Gerken, Recent Advances in Microalgal Biotechnology. Potential Application of Microalgae Wastewater Treatment. OMICS Group eBooks, (2014) [Google Scholar]
  14. V. H. Smith, G. D. Tilman, and J. C. Nekola,, Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems, Env. Pollution, 100, 179–196, (1999) [CrossRef] [PubMed] [Google Scholar]
  15. Z-F Su, X. Li, H-Y Hu, Y-H Wu, T Noguchi, Culture of Scenedesmus sp LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photomembrane bioreactor. Bioresource Technology 1; 102, 7627–32. (2011) [CrossRef] [Google Scholar]
  16. T. Kallqvist, A. Svenson, Assessment of ammonia toxicity in tests with the microalga, Nephroselmispyriformis, Chlorophyta. Water Res., 37, 477–84, (2003) [CrossRef] [Google Scholar]
  17. X. Yuan, A. Kumar, AK. Sahu, and Sj. Ergas. Impact of ammonia concentration on Spirulina platensis growth in an airlift photobioreactor, Bioresour. Technol., 102(3), 234–9, (2011) [Google Scholar]
  18. Gani, P. S. Sunar, N. M. M. A. Peralta, H. A. B. L. Latiff, and A. A. A. B. R. Razak, Influence of Initial Cell Concentrations on the Growth Rate And Biomass Productivity of Microalgae In Domestic Wastewater, 14(2), 399–409, (2016) [Google Scholar]
  19. N.A.A. Latiffi, S. Radin, N.M. Apandi and H. Mohd, Application of Phycoremediation using Microalgae Scenedesmus sp. as Wastewater Treatment in Removal of Heavy Metals from Food Stall Wastewater, J. of Applied Mechanics and Materials, (773–774), 1168–1172, (2014) [Google Scholar]
  20. Nichols Hw and Bold Hc., Hand Book of Physiological Methods, Growth media-Fresh Water, Cambridge University, London, U.K., 7–24, (1965) [Google Scholar]
  21. F. H. Stephenson, Calculations for Molecular Biology and Biotechnology, Elsevier’s Science and Technology, Oxford, U.K., (2010) [Google Scholar]
  22. Mi. L. Shuler, Bioprocess Engineering-Basic Concepts (2nd Edition), Prentice Hall PTR, New Jersey, U.S.A., (2002) [Google Scholar]
  23. APHA (AMERICAN PUBLIC HEALTH ASSOCIATION), Standard Methods for Examination of Water and Wastewater (21stedn.), American Public Health Association, Washington DC, U.S.A., (2012) [Google Scholar]
  24. R. A. Andersen, Algae culturing technique, Elsevier’s Science and Technology, Oxford, U.K., (2005). [Google Scholar]
  25. E. A. Echiegu and J. T. Liberty, Effluents Characteristics of Some Selected Food Processing Industries in Enugu and Anambra States of Nigeria, J. of Environment and Eart Science, 3(9), 46–54, (2013) [Google Scholar]
  26. Environmental Quality Act 1974, Department of Environmental Malaysia: A Guide For Investor, Putrajaya, Malaysia, (2010) [Google Scholar]
  27. L. Creswell, Phytoplankton Culture for Aquaculture Feed, Florida, US, (2010), Retrieved on August 23. 2016 from http://www2.ca.uky.edu/wkrec/PhytoplanktonAlgaeCulture.pdf [Google Scholar]
  28. P. Gani, N. M. Sunar, H. Matias-peralta, A. Aziz and A. Latiff, Application Of Phycoremediation Technology In Thetreatment Of Food Processing Wastewater By Freshwater Microalgae Botryococcus Sp., Applied Ecology and Environmental Research, 11(11), 7288–7292 (2016) [Google Scholar]
  29. T.-Y. Zhang, Y-H. Wu, S-F. Zhu, F-M. Li, H-Y. Ho, Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition, Bioresource Technology 149, 586–9 (2013) [CrossRef] [Google Scholar]
  30. Ş.S. Can, V. Demir, S.A. Korkmaz, E. Can, Treatment of domestic wastewater with Botryococcus braunii (Cholorophyceae), J. of Food, Agriculture and Environment, 11(4&3) 3–5 (2013) [Google Scholar]
  31. M.-K. Ji, R-A.I. Abou-Shanab, S-H. Kim, E-S. Salama, S-H. Lee, A.N. Kabra, Y-S. Lee, S. Hong, B-H. Jeon, Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production, Ecological Engineering 58, 142–148, (2013) [CrossRef] [Google Scholar]
  32. Z. Arbib, J. Ruiz, P. Álvarez-Díaz, C. Garrido-Pérez, and J. A. Perales, Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production, Water Research, 49, 465–474 (2014) [CrossRef] [Google Scholar]
  33. R. Bouterfas, M. Belkoura, P. M. Abdellah, S, B. P., D. Narbonne, and T. Cedex, The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake Source of the organisms isolated from the eutrophic Takerkoust barrage ‘ s, 25(3), 647–656, (2006) [Google Scholar]
  34. M. S. De Alva, V. M. Luna-pabello, E. Cadena, and E. Ortíz, Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production, Bio resource Technology 146, 744–748, (2006) [CrossRef] [Google Scholar]
  35. D.Y. Shin, H.U. Cho, J.C. Utomo, Y.-N. Choi, X. Xu and J.M. Park, Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent, Bio resource technology 184, 215–21, (2015) [CrossRef] [Google Scholar]
  36. M. Song, H. Pei, W. Hu, S. Zhang, G. Ma, L. Han, and Y. Ji, Identification and characterization of a freshwater microalga Scenedesmus SDEC-8 for nutrient removal and biodiesel production, Bio resource Technology, 162, 129–135, (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.