Open Access
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 06004
Number of page(s) 8
Section Water and Wastewater Treatment Process
Published online 05 April 2017
  1. M. A. Fulazzaky, Determining the resistance of mass transfer for adsorption of the surfactants onto granular activated carbons from hydrodynamic column, Chem. Eng. J., 166(3), 832–840, (Feb., 2011) [CrossRef] [Google Scholar]
  2. R. Boopathy, S. Karthikeyan, A. B. Mandal, and G. Sekaran, Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies., Environ. Sci. Pollut. Res. Int., 20(1), 533–542, (Jan, 2013) [CrossRef] [Google Scholar]
  3. B. G. Tsyntsarski, B. N. Petrova, T. K. Budinova, N. V Petrov, and D. K. Teodosiev, Removal of phenol from contaminated water by activated carbon produced from waste coal material, Bulg. Chem. Commun., 46(2), 353–361, (2014) [Google Scholar]
  4. M. Shanmugaprakash, V. Sivakumar, and M. Manimaran, Batch and Dynamics Modeling of the Biosorption of Cr (VI) from Aqueous Solutions by Solid Biomass Waste from the Biodiesel Production, Environ. Prog. Sustain. Energy, 33(2), 342–352, (2014) [CrossRef] [Google Scholar]
  5. A. Shehzad, M. J. K. Bashir, S. Sethupathi, and J.-W. Lim, An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon, Process Saf. Environ. Prot., 98, 309–318, (2015) [Google Scholar]
  6. M. H. Dehghani, D. Sanaei, I. Ali, and A. Bhatnagar, Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: Kinetic modeling and isotherm studies, J. Mol. Liq., 215, 671–679, (2016) [Google Scholar]
  7. N. Zayadi and N. Othman, Characterization and Optimization of Heavy Metals Biosorption by Fish Scales, Adv. Mater. Res., 795, 260–265, (2013) [Google Scholar]
  8. C. Jia, Y. Dai, J. Chang, C. Wu, Z. Wu, and W. Liang, Adsorption characteristics of used brick for phosphorus removal from phosphate solution, Desalin. Water Treat., 51, 5886–5891, (2013) [CrossRef] [Google Scholar]
  9. J. Wang, Y. Zhang, C. Feng, H. Wang, and L. Wang, Adsorption Capacity Comparison among Three Filter Media for Phosphorus, 2010 4th Int. Conf. Bioinforma. Biomed. Eng., 1–4, Jun. (2010) [Google Scholar]
  10. M. A. Fulazzaky, M. H. Khamidun, M. F. M. Din, and A. R. M. Yusoff, Adsorption of phosphate from domestic wastewater treatment plant effluent onto the laterites in a hydrodynamic column, Chem. Eng. J., 258, 10–17, (2014) [CrossRef] [Google Scholar]
  11. M. F. Zawrah, R. A. Gado, N. Feltin, S. Ducourtieux, and L. Devoille, Recycling and utilization assessment of waste fired clay bricks ( Grog ) with granulated blast-furnace slag for geopolymer production, Process Saf. Environ. Prot., 103, 237–251, (2016) [CrossRef] [Google Scholar]
  12. F. Kooli, L. Yan, R. Al-Faze, and A. Al-Sehimi, Removal enhancement of basic blue 41 by brick waste from an aqueous solution, Arab. J. Chem., 8(3), 333–342, (2015) [CrossRef] [Google Scholar]
  13. J. A. Calabria, W. L. Vasconcelos, and A. R. Boccaccini, Microstructure and chemical degradation of adobe and clay bricks, Ceram. Int., 35, 665–671, (2009) [CrossRef] [Google Scholar]
  14. T. Hirose, T. Fujino, T. Fan, and H. Endo, Effect of carbonization temperature on the structural changes of woodceramics impregnated with liquefied wood, Carbon N. Y., 40, 761–765, (2002) [CrossRef] [Google Scholar]
  15. M. A. Gulgun, M. H. Nguyen, and W. M. Kriven, Polymerized Organic – Inorganic Synthesis of Mixed Oxides, J. Am. Ceram. Soc., 82(3), 556–560, (1999) [CrossRef] [Google Scholar]
  16. K. Lin, W. Chang, T. Chang, C. Lee, and C. Lin, Recycling thin film transistor liquid crystal display (TFT-LCD) waste glass produced as glass – ceramics, J. Clean. Prod., 17(16), 1499–1503, (2009) [CrossRef] [Google Scholar]
  17. M. A. Fulazzaky, N. A. A. Salim, N. H. Abdullah, A. R. Mohd Yusoff, and E. Paul, Precipitation of iron-hydroxy-phosphate of added ferric iron from domestic wastewater by an alternating aerobic-anoxic process, Chem. Eng. J., 253, 291–297, (2014) [CrossRef] [Google Scholar]
  18. S. Sengupta and A. Pandit, Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer., Water Res., 45(11), 3318–3330, (2011) [CrossRef] [Google Scholar]
  19. M. H. Khamidun and M. A. Fulazzaky, Adsorption of phosphate from synthetic solution onto the limestone in a plug ‐ flow column, Int. J. Adv. Appl. Sci., 2(12), 7–13, (2015) [Google Scholar]
  20. M. H. Khamidun, M. A. Fulazzaky, M. F. Md Din, and A. R. Mohd Yusoff, Resistance of mass transfer, kinetic and isotherm study of ammonium removal by using a Hybrid Plug-Flow Column Reactor (HPFCR), Proceedings of the 2013 International Conference on Frontier of Energy and Environment Engineering, ICFEEE 2013, 555–559 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.