Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 02009
Number of page(s) 10
Section Structure, Solid Mechanics and Computational Engineering
DOI https://doi.org/10.1051/matecconf/201710302009
Published online 05 April 2017
  1. J.Purkiss, Fire Safety Engineering Design of Structures, Butterworth-Heinemann, Jordan Hill, Oxford (1996) [Google Scholar]
  2. E.U.Chowdhury, Behaviour of Fibre Reinforced Polymer Confined, PhD Thesis, Queen’s University, Ontario, Canada, (2009) [Google Scholar]
  3. J.M.Irwan, S.K.Faisal, N.Othman, M.H.Wan Ibrahim, R.M.Asyraf and M.M.K.Annas, Performance of concrete using light waste PET fibre, Adv. Materials Research, 795, 352–355, (2014) [CrossRef] [Google Scholar]
  4. S.Shahidan, S.S.M.Zuki and N.Jamaluddin, Damage grading system for severity assessment on concrete structure, Case Studies in Constr. Materials, 5, 79–86, (2016) [CrossRef] [Google Scholar]
  5. V.K.R.Kodur, T.T.Lie, Experimental Studies on the Fire Resistance of Circular Hollow Steel Columns Filled with Steel-Fibre-Reinforced Concrete, J. of Fire Protection Engineering, 7, 89–97, (1995) [CrossRef] [Google Scholar]
  6. X.Zhao, R.Grzebieta and M.Elchalakani, Tests of concrete-filled double skin CHS composite stub columns, Steel Comp Struct: Int. J., 2, 129–146, (2002) [CrossRef] [Google Scholar]
  7. L.H.Han, Y. F.Yang and L.Xu, An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns, J. Constr. Steel Res., 59, 427–452, (2003) [CrossRef] [Google Scholar]
  8. S.Shahidan, I.Isham, and N.Jamaluddin, A Review on Waste Minimization by Adopting in Self Compacting Concrete, MATEC Web of Conf., 47, 1–7, (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  9. J.Ding, Y.C.Wang, Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire, J. Constr. Steel Res., 64, 1086–1102, (2008) [CrossRef] [Google Scholar]
  10. L.H.Han, W.Li and R.Bjorhovde, Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members, J. Constr. Steel Res., 100, 211–228, (2014) [CrossRef] [Google Scholar]
  11. S.Shahidan, H.B.Koh, A.M.S.Alansi, and L. Y.Loon, Strength Development and Water Permeability of Engineered Biomass Aggregate Pervious Concrete, MATEC Web of Conf., 47, 1–6, (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  12. X.L.Zhao and R.Grzebieta, Strength and ductility of concrete filled double skin (SHS inner and SHS outer) tubes, Thin-Walled Struct., 40, 199–213, (2002) [CrossRef] [Google Scholar]
  13. R.Imani, M.Bruneau and G.Mosqueda, Simplified analytical solution for axial load capacity of concrete-filled double-skin tube (CFDST) columns subjected to fire, Engineering Structure, 102, 156–175, (2015) [CrossRef] [Google Scholar]
  14. H.Lu, X.L.Zhao and L.H.Han, FE modelling and fire resistance design of concrete filled double skin tubular columns, J. Constr. Steel Res., 67, 1733–1748, (2011) [CrossRef] [Google Scholar]
  15. H.Lu, L.H.Han and X.L.Zhao, Fire performance of self-consolidating concrete filled double skin steel tubular columns: Experiments, Fire Safety J., 45, 106–115, (2010) [CrossRef] [Google Scholar]
  16. H.Lu, X.L.Zhao and L.H.Han, Testing of self-consolidating concrete-filled double skin tubular stub columns exposed to fire, J. Constr. Steel Res., 66, 1069–1080, (2010) [CrossRef] [Google Scholar]
  17. H.Yang, L.H.Han, Y.C.Wang, Effects of heating and loading histories on post-fire cooling behaviour of concrete-filled steel tubular columns, J. Constr. Steel Res., 64, 556–570, (2008) [CrossRef] [Google Scholar]
  18. Y.Yang and L.Han, Fire Resistance of Concrete-Filled Double Skin Steel Tubular Columns, Proc. of the 4th Int.l Conf. on Adv. in Steel Struc. Shanghai, China, 1047–1052, (2005) [Google Scholar]
  19. L.Han, Y.Yang, H.Yang and J.Huo, Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire, Thin-Walled Struct., 40, 991–1012, (2002) [CrossRef] [Google Scholar]
  20. BSEN 12390-3, Testing hardened concrete-Part 3: Compressive strength of test specimens, British Standards, London, United Kingdom, (2009) [Google Scholar]
  21. ASTM E8/E8M-11, Standard Test Methods for Tension Testing of Metallic Materials, West Conshohocken, PA, (2011) [Google Scholar]
  22. ASTM E119-11, Standard Test Methods for Fire Tests of Building Construction and Materials, West Conshohocken, PA, (2010) [Google Scholar]
  23. N.Short, J.Purkiss, S.Guise, Assessment of fire damaged concrete using colour image analysis, Constr. Build. Mater., 15, 9–15, (2001) [CrossRef] [Google Scholar]
  24. S.S.M.Zuki, K.K.Choong, J.Jayaprakash and S.Shahidan, Behavior of Fire Exposed Concrete-Filled Double Skin Steel Tubular ( CFDST ) Columns under Concentric Axial Loads, Appl. Mech. Mater, 773-774, 938–42, (2015) [CrossRef] [Google Scholar]
  25. S.S.M.Zuki, K.K.Choong, J.Jayaprakash, S.Shahidan, Effect of Diameter on Fire Exposed Concrete-Filled Double Skin Steel Tubular (CFDST) Columns under Concentric Axial Loads, Appl. Mech. Mater., 802, 130–135, (2015) [CrossRef] [Google Scholar]
  26. S.Shahidan, S.S.M.Zuki, K.K.Choong, J.Jayaprakash, Repaired of Fire- Damaged Concrete-Filled Double Skin Steel Tubular (CFDST) Columns With Fiber Reinforced Polymer (FRP), ARPN J. Eng. Appl. Sci., 11, 3718–372, (2016) [Google Scholar]
  27. L.Han and J.Huo, Concrete-Filled Hollow Structural Steel Columns after Exposure to ISO-834 Fire Standard, J. Struct. Eng., 129, 68–78, (2003) [CrossRef] [Google Scholar]
  28. S.Gunalan, M.Mahendran, Structures Experimental investigation of post-fire mechanical properties of cold-formed steels, Thin Walled Struct., 84, 241–254, (2014) [CrossRef] [Google Scholar]
  29. M.B.Dwaikat, Flexural Response Of Reinforced Concrete Beams Exposed To Fire, PhD Thesis, Michigan State University, (2009) [Google Scholar]
  30. X.Qiang, F.S.K.Bijlaard and H.Kolstein, Deterioration of mechanical properties of high strength structural steel S460N under steady state fire condition, Mater. Des., 36, 438–442, (2012) [CrossRef] [Google Scholar]
  31. F.Liu, L.Gardner, H.Yang, Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes, J. Constr. Steel Res, 102, 82–103, (2014) [CrossRef] [Google Scholar]
  32. Z.Tao, L.H.Han, J.P.Zhuang, Cyclic performance of fire-damaged concretefilled steel tubular beam–columns repaired with CFRP wraps, J. Constr. Steel Res., 64, 37–50, (2008) [CrossRef] [Google Scholar]
  33. Z.Tao, L.H.Han, Behaviour of fire-exposed concrete-filled steel tubular beam columns repaired with CFRP wraps, Thin-Walled Struct.,45, 63–76, (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.