Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 01025
Number of page(s) 10
Section Sustainable and Advanced Construction Materials
DOI https://doi.org/10.1051/matecconf/201710301025
Published online 05 April 2017
  1. O. Figovsky and D. Beilin, Advanced polymer concretes and compounds, CRC Press, Taylor & Francis Group, Boca Raton, (2014) [Google Scholar]
  2. Y. Ohama, Handbook of polymer-modified concrete and mortars, Noyes Publications, Park Ridge, New Jersey, USA, (1995) [Google Scholar]
  3. S.R. Bothra and Y. M. Ghugal, Polymer-Modified concrete: Review, Int. J. of Research in Engineering and Technology, 4(4), 845–848, (2015) [CrossRef] [Google Scholar]
  4. K.T. Varughese and B.K. Chaturvedi, Fly Ash as fine aggregate in polyester based polymer concrete, Cement and Concrete Composites, 18(2), 105–108, (1996) [CrossRef] [Google Scholar]
  5. A.S. Momtazi, R.K. Khoshbijari and S.S. Mogharab, Polymers in concrete: Applications and specifications, European Online J. of Natural and Social Sciences, Special Issue on New Trends in Architecture, Civil Engineering and Urban Studies, 3(3), 62–72, (2015) [Google Scholar]
  6. M.A. R. Bhutta and Y. Ohama, Recent status of research and development of concretepolymer composites in Japan, Concrete Research Letters, 1(4), 125–130, (2010) [Google Scholar]
  7. C.K. Ma, A.Z. Awang, W. Omar, M. Liang, J. Siow-Wei and M. Azimi, Flexural capacity enhancement of rectangular high-strength concrete columns confined with post-tensioned steel straps: Experimental investigation and analytical modeling, Structural concrete, 17(4), 668–676, (2016) [CrossRef] [Google Scholar]
  8. C.K. Ma, A.Z. Awang, R. Garcia, W. Omar and K. Pilakoutas, Behaviour of over‐reinforced high‐strength concrete beams confined with post‐tensioned steel straps–an experimental investigation, Structural Concrete, 17(5), 768–777, (2016) [CrossRef] [Google Scholar]
  9. L.K. Aggarwal, P.C. Thapliyal and S.R. Karade, Properties of polymer-modified mortars using epoxy and acrylic emulsions, Construction and Building Materials, 21(2), 379–383, (2007) [Google Scholar]
  10. P. Subham and Singh, Enhancement of proeperties polymer modified ferrocement, Int. J. of Recent Development in Engineering and Technology, 4(8), 19–23, (2015) [Google Scholar]
  11. A. M. El-Dakroury, Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste, Arab J. of Nuclear Science and Applications, 47(2), 44–53, (2013) [Google Scholar]
  12. G. Barluenga and F. Hernandez-Olivares, SBR latex modified mortar rheology and mechanical behaviour, Cement and Concrete Research, 34(3), 527–535, (2004) [CrossRef] [Google Scholar]
  13. V. Zivica, The properties of cement paste with admixture of polyvinyl acetate emulsion, Bulletin RILEM, 28, 121–128, (1965) [Google Scholar]
  14. A. Jenni, L. Holzer, R. Zurbriggen and M. Herwegh, Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars, Cement and Concrete Research, 35(1), 35–50, (2005) [CrossRef] [Google Scholar]
  15. A. Jenni, R. Zurbriggen, L. Holzer, and M. Herwegh, Changes in microstructures and physical properties of polymer-modified mortars during wet storage, Cement and Concrete Research, 36(1), 79–90, (2006) [CrossRef] [Google Scholar]
  16. H.B. Wagner, Polymer-Modified hydraulic cements, industrial and engineering chemstry, Product Research and Development, 4(3), 191–196, (1965) [CrossRef] [Google Scholar]
  17. D. Xin, Z. Xinping, C. Hanlin, W. Dingpeng, and Y. Wei, Mechanical properties of polyester fiber and sbr latex compound-modified mortar for tunnel grouting, Electronic J. of Geotechnical Engineering, 21(4), 1365–1374, (2016) [Google Scholar]
  18. A. Parghi and M. Shahria Alam, Effects of curing regimes on the mechanical properties and durability of polymer-modified mortars- an experimental investigation, J. of Sustainable Cement-Based Materials, 5(5), 324–347, (2016) [CrossRef] [Google Scholar]
  19. V. Bhikshma, K. Jagannadha Rao and B. Balaji, An experimental study on behavior of polymer cement concrete, Asian J. of Civil Engineering (Building and Housing), 11(5), 563–573, (2010) [Google Scholar]
  20. E. Oussama, G. Elhem, M. Valerie and B.O. Mongi, Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250°C, Construction and Building Materials, 27(1), 415–424, (2012) [CrossRef] [Google Scholar]
  21. M. Golestaneh, G. Amini, G.D. Najafpour and M.A. Beygi, Evaluation of mechanical strength of epoxy polymer concrete with silica powder as filler, World Applied Sciences J., 9(2), 216–220, (2010) [Google Scholar]
  22. R. Wang, P. Wang and X. Li, Physical and mechanical properties of styrene-butadine rubber emulsion modified cement mortars, Cement and Concrete Research, 35(5), 900–906, (2005) [CrossRef] [Google Scholar]
  23. R. Bedi, R. Chandra and S. P. Singh, Mechanical properties of polymer concrete, J. of Composites, 2013, 1–12. (2013) [CrossRef] [Google Scholar]
  24. K.T. Varughese and B.K. Chaturvedi, Fly Ash as fine aggregate in polyester based polymer concrete, Cement and Concrete Composites, 18(2), 105–108, (1996) [CrossRef] [Google Scholar]
  25. J.P. Gorninski, D.C. Dal Molin and C.S. Kazmierczak, Study on the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and portland cement concrete, Cement and Concrete Research, 34(11), 2091–2095, (2004) [CrossRef] [Google Scholar]
  26. H. Abdel-Fattah and M.M. El-Hawary, Flexural behavior of polymer concrete, Construction and Building Material, 13(5), 253–262, (1999) [Google Scholar]
  27. M.V.N. Sivakumar, Effect of polymer modification on mechanical and structural properties of concrete – an experimental investigation, Int. J. of Civil and Structural Engineering, 1(4), 732–740, (2010) [Google Scholar]
  28. L. Bureau, A. Alliche, Ph. Pilvin and S. Pascal, Mechanical characterization of a styrene-butadine modified mortar, Materials Science and Engineering: A, 308(1-2), 233–240, (2001) [Google Scholar]
  29. S. Pascal, A. Alliche and Ph. Pilvin, Mechanical behaviour of polymer modified mortars, Materials Science and Engineering: A, 380(1-2), 1–8, (2004) [Google Scholar]
  30. Z. Yang, X. Shi, A. T. Creighton and M. M. Peterson, Effect of styrene-butadine rubber latex on the chloride permeability and microstructure of portland cement mortar, Construction and Building Materials, 23, 2283–2290, (2009) [Google Scholar]
  31. F.A. Shaker, A.S. El-Dieb and M.M. Reda, Durability of styrene-butadine latex modified concrete, Cement and Concrete Research, 27(5), 711–720, (1997) [CrossRef] [Google Scholar]
  32. D.A. Silva, H.R. Roman and P.J.P. Gleize, Evidences of chemical interaction between eva and hydrating portland cement, Cement and Concrete Research, 32, 1383–1390, (2002) [CrossRef] [Google Scholar]
  33. H. Zhu, P. Wang, R. Wang and G. Zhang, Effects of two redispersible polymer powders on efflorescence of portland cement-based decorative mortar, Materials Science (Medziagotyra), 20(3), 345–350, (2014) [Google Scholar]
  34. L.R. Brancher, M.F. de Onunes, A.M.C. Grisa, D.T. Pagnussat and M. Zeni, Acoustic behavior of subfloor lightweight mortars containing micronized poly (Ethylene Vinyl Acetate) (EVA), Materials, 9(51), 1–9, (2016) [CrossRef] [Google Scholar]
  35. M. Barbuta, M. Rujanu and A. Nicuta, Characterization of polymer concrete with different wastes additions, Procedia Technology, 22, 407–412, (2016) [CrossRef] [Google Scholar]
  36. E. Aminudin, M.F. Md Din, M.W. Hussin, A H. Abdullah, K. Iwao and Y. Ichikawa, Properties of agro-Industrial aerated concrete as potential thermal insulation for building, MATEC Web of Conferences, 47, 1–9, (2016) [Google Scholar]
  37. M. A. Kumar and J. A. Bari, Flexural behaviour of polymer modified basalt fiber reinforced concrete - A review, Int. J. on Applications in Civil and Environmental Engineering, 1(3), 1–5, (2015) [Google Scholar]
  38. A.S. Momtazi, R.K. Khoshkbijari and S.S. Mogharab, Polymers in concrete: applications and specifications, Special Issue on New Trends in Architecture, Civil Engineering, and Urban Studies, European Online J. of Natural and Social Sciences, 3(3), 62–72, (2015) [Google Scholar]
  39. R.M.I. Retno Susilorini, H. Hardjasaputra, S. Tudjono, G. Hapsari, S,R. Wahyu, G. Hadikusumo and J. Sucipto, The advantage of natural polymer modified mortar with seaweed: green construction material innovation for sustainable concrete, Procedia Engineering, 95, 419–425, (2014) [CrossRef] [Google Scholar]
  40. C. Niveditha, K. Sarayu, A. Ramachandra Murthy, V. Ramesh Kumar and R.I. Nagesh, Marine algae for cement mortar strengthening, J. of Civil Engineering Research, 4(2A), 23–25, (2014) [Google Scholar]
  41. Y.H. Jang, S.O. Han, I.N. Sim and H. Kim, Pretreatment effects of seaweed on the thermal and mechanical properties of seaweed/polypropylene biocomposites, Composites Part A: Applied Science and Manufacturing, 47, 83–90, (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.