Open Access
Issue
MATEC Web Conf.
Volume 103, 2017
International Symposium on Civil and Environmental Engineering 2016 (ISCEE 2016)
Article Number 01012
Number of page(s) 9
Section Sustainable and Advanced Construction Materials
DOI https://doi.org/10.1051/matecconf/201710301012
Published online 05 April 2017
  1. K. Ramamurthy, E. Kunhanandan Nambiar, and G. Indu Siva Ranjani, A classification of studies on properties of foam concrete, Cement and Concrete Composites, 31 (6), 388–396, (2009) [CrossRef] [Google Scholar]
  2. A. Neville and J. Brooks, Concrete technology. Harlow, Essex, UK: Longman Scientific & Technical, 346, 350–351, (1987) [Google Scholar]
  3. ASTM C 330-89, Standard Specification for Lightweight Aggregates for Structural Concrete, ASTM International, Conshohocken, Pennsylvania, United States, (1989) [Google Scholar]
  4. Y. Amran, N. Farzadnia and A. Abang Ali, Properties and applications of foamed concrete; a review, Construction and Building Materials, 101, 990–1005, (2015) [CrossRef] [Google Scholar]
  5. N. Uddin, Structural characterization of hybrid fiber reinforced polymer (FRP)- autoclave aerated concrete (AAC) panels, J. of Reinforced Plastics and Composites, 25 (9), 981–999, (2006) [CrossRef] [Google Scholar]
  6. A. Just, and B. Middendorf, Microstructure of high-strength foam concrete, Materials Characterization, 60 (7), 741–748, (2009) [CrossRef] [Google Scholar]
  7. M.R. Jones, and A. McCarthy, Behaviour and Assessment of Foamed Concrete for Construction Applications, Thomas Telford, London, UK (2005) [Google Scholar]
  8. M. Röβler, and I. Odler, Investigations on the relationship between porosity, structure and strength of hydrated Portland cement pastes I. Effect of porosity, Cement and Concrete Research, 15 (2), 320–330 (1985) [CrossRef] [Google Scholar]
  9. K. Yang, K. Lee, J. Song, and M. Gong, Properties and sustainability of alkali-activated slag foamed concrete, J. of Cleaner Production, 68, 226–233, (2014) [CrossRef] [Google Scholar]
  10. M. Hainin, M.A. Aziz, Z. Ali, R. Putra Jaya, M. El-Sergany, and H. Yaacob, Steel slag as a road construction material, J. Technolology, 73 (4) (2015) [Google Scholar]
  11. H. Motz, and J. Geiseler, Products of steel slags an opportunity to save natural resources, Waste Management, 21(3), 285–293, (2001) [CrossRef] [Google Scholar]
  12. E. Oluwasola, M. Hainin and M. A. Aziz, Characteristics and utilization of steel slag in road construction, J. Technology, 70 (7), (2014) [Google Scholar]
  13. M. Maslehuddin, A. Sharif, M. Shameem, M. Ibrahim, and M. Barry, Comparison of properties of steel slag and crushed limestone aggregate concretes, Construction and Building Materials, 17 (2), 105–112, (2003) [CrossRef] [Google Scholar]
  14. P. Kothai, and R. Malathy, Utilization of steel slag in concrete as a partial replacement material for fine aggregates, IJIRSET Int. J. of Innovative Research In Science, Engineering and Technology, 3 (4), (2014) [Google Scholar]
  15. F. Falade, E. Ikponmwosa, and B. Ukponu, Structural assessment of foamed concrete containing steel slag as partial replacement of sand, UNILAG J. of Medicine, Science and Technology, 1 (1), 137–145, (2015) [Google Scholar]
  16. ASTM C 150-05, Standard Specification for Portland Cement, ASTM International, Conshohocken, Pennsylvania, United States, (2005) [Google Scholar]
  17. ASTM C1602-06, Standard Specification for Mixing Water Used in the Production of Hydraulic Cement Concrete, ASTM International, Conshohocken, Pennsylvania, United States, (2006) [Google Scholar]
  18. K. Byun, H. Song, and S. Park, Development of structural lightweight foamed concrete using polymer foam agent, Int. Congress on Polymers in Concrete, 19, (1998) [Google Scholar]
  19. D. Aldridge, and T. Ansell, Foamed concrete: production and equipment design, properties, applications and potential. In: Proc. of one day seminar on foamed concrete: properties, applications and latest technological developments, Loughborough University, Loughborough, UK, (2001) [Google Scholar]
  20. ASTM C 1611-05, Standard Test Method for Slump Flow of Self-Consolidating Concrete, ASTM International, Conshohocken, Pennsylvania, United States, (2005) [Google Scholar]
  21. ASTM C 143-08, Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, Conshohocken, Pennsylvania, United States, (2008) [Google Scholar]
  22. BS EN 12390-3, Testing Hardened Concrete: Compressive Strength of Test Specimens, British Standard Institution, London, UK, (2002) [Google Scholar]
  23. BS EN 12390-6, Testing Hardened Concrete: Tensile Splitting Strength of Test Specimens, British Standard Institution, London, UK, (2000) [Google Scholar]
  24. BS EN 12390-5, Testing Hardened Concrete: Flexural Strength of Test Specimens, British Standard Institution, London, UK, (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.