Open Access
MATEC Web Conf.
Volume 88, 2017
2016 International Conference on Biomaterials, Nanomaterials and Composite Materials (CBNCM 2016)
Article Number 02009
Number of page(s) 6
Section Chapter 2: Nano-materials and Composite materials
Published online 09 December 2016
  1. Mohamed A. Abdelwahab, Allison Flynn, et al. Thermal, mechanical and morphological characterization of plasticized PLA/PHB blends [J]. Polymer Degradation and Stability, 2012, 97: 1822–1828. [CrossRef] [Google Scholar]
  2. Murali M. Reddy, Singaravelu Vivekanandhan, Misra Manjusri, et al. Biobased plastics and bionanocomposites: current status and future opportunities [J]. Progress in Polymer Science, 2013, 38 (10): 1653–1689. [CrossRef] [Google Scholar]
  3. Perlette N. Takala, Stephane Salmieri, Boumail Afia, et al. Antimicrobial effect and physicochemical properties of bioactive trilayer polycaprolactone/methylcellulose-based films on the growth of foodborne pathogens and total microbiota in fresh broccoli [J]. Journal of Food Engineering, 2013, 116 (3): 648–655. [CrossRef] [Google Scholar]
  4. Arrieta M. P., Peltzer M. A., López J., et al. Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol [J]. Journal of Food Engineering, 2014, 121: 94–101. [CrossRef] [Google Scholar]
  5. Arrieta M. P., Samper M. D., López J., et al. Combined effect of poly (hydroxybutyrate) and plasticizers on polylactic acid properties for film intended for food packaging [J]. Journal of Polymers and the Environment, 2014, 22 (4): 460–470. [CrossRef] [Google Scholar]
  6. M.P. Arrieta, J. López, D. López, et al. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals [J]. Industrial Crops and Products, 2016, 93: 290–301. [CrossRef] [Google Scholar]
  7. Arrieta M.P., López J., Rayón E., et al. Disintegrability under composting conditions of plasticized PLA-PHB blends [J]. polymer degradation and stability, 2014, 108: 307–318. [CrossRef] [Google Scholar]
  8. Dolores S.M., Patricia A.M., Santiago F., et al. Influence of biodegradable materials in the recycled polystyrene [J]. Journal of Applied Polymer Science, 2014, 131. [Google Scholar]
  9. Al-Itry Racha, Lamnawar Khalid, Maazouz Abderrahim. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends [J]. Rheologica Acta, 2014, 53 (7): 501–517. [CrossRef] [Google Scholar]
  10. R. Auras, B. Harte, S. Selke. An overview of polylactides as packaging materials [J]. Macromolecular Bioscience, 2004, 4 (9): 835–864. [CrossRef] [Google Scholar]
  11. E. Fortunati, D. Puglia, C. Santulli, et al. Biodegradation of Phormium tenax/poly(lactic acid) composites [J]. Journal of Applied Polymer Science, 2012, 125 (2): E562–E572. [CrossRef] [Google Scholar]
  12. T. Furukawa, H. Sato, R. Murakami, et al. Structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(L-lacticacid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry[J]. Macromolecules, 2005, 38 (15): 6445–6454. [CrossRef] [Google Scholar]
  13. Long-Feng Wang, Jong-Whan Rhim, Seok-In Hong. Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application [J]. LWT-Food Science and Technology 2016, 68: 454–461. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.