Open Access
Issue
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
Article Number 03010
Number of page(s) 7
Section Chemical Engineering
DOI https://doi.org/10.1051/matecconf/20178703010
Published online 12 December 2016
  1. J.D. Bala, J. Lalung, N. Ismail, Palm oil mill effluent (POME) treatment “microbial communities in an anaerobic digester”: A review, IJSRP 4 (6) (2014) 1–24. [Google Scholar]
  2. T.Y. Wu, A.W. Mohammad, J. Md. Jahim, N. Anuar, Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes, J. Environ. Manage. 91 (7) (2010) 1467–1490. [CrossRef] [Google Scholar]
  3. A.N. Ma, A.S.H. Ong, Pollution control in palm oil mills in Malaysia, J. Am. Oil Chem. Soc. 62 (2) (1985) 261–266. [CrossRef] [Google Scholar]
  4. P.E. Poh, M.F. Chong, Development of anaerobic digestion methods for palm oil mill effluent (POME) treatment, Bioresour. Technol. 100 (1) (2009) 1–9. [CrossRef] [Google Scholar]
  5. F. Schuchardt, K. Wulfert, Darnoko, T. Herawan, Effect of new palm oil mill processes on the EFB and POME utilization, Journal of Oil Palm Research Special Issue (2008) 115–126. [Google Scholar]
  6. Y. Shirai, M. Wakisaka, S. Yacob, M.A. Hassan, S. Suzuki, Reduction of methane released from palm oil mill lagoon in Malaysia and its countermeasures, Mitig. Adapt. Strategies Glob. Chang. 8 (3) (2003) 237–252. [CrossRef] [Google Scholar]
  7. L. Milich, The role of methane in global warming: Where might mitigation strategies be focused, Glob. Environ. Chang. 9 (3) (1999) 179–201. [CrossRef] [Google Scholar]
  8. M.K. Amosa, M.S. Jami, M.F.R. Alkhatib, T. Tajari, D.N. Jimat, R. U. Owolabi, Turbidity and suspended solids removal from high-strength wastewater using high surface area adsorbent: Mechanistic pathway and statistical analysis, Cogent Eng. 3 (1) (2016) 1–18. [CrossRef] [Google Scholar]
  9. S. Syafalni, A. Ismail, I. Dahlan, K.W. Chan, Treatment of dye wastewater using granular activated carbon and zeolite filter, Modern Applied Science 6 (2) (2012) 37–51. [Google Scholar]
  10. R.R. Mohammed, Decolorisation of biologically treated palm oil mill effluent (POME) using adsorption technique, IRJES 2 (10) (2013) 1–11. [Google Scholar]
  11. S. Langergren, B.K. Svenska, Zur theorie der sogenannten adsorption geloester stoffe, Veternskapsakad Handlingar 24 (4) (1898) 1–39. [Google Scholar]
  12. Y.S. Ho, G. McKay, The kinetics of sorption of basic dyes from aqueous solutions by sphagnum moss peat, Can. J. Chem. Eng. 76 (1998) 822–826. [CrossRef] [Google Scholar]
  13. C. Aharoni, F.C. Tompkins, in: D.D. Eley, H. Pines, P.B. Weisz (Eds.), Advances in Catalysis and Related Subjects vol. 21 (Academic Press, New York, 1970). [Google Scholar]
  14. W.J. Weber, J.C. Morris, Proc. Int. Conf. Water pollution symposium vol.2, pp.231–266 (Pergamon, Oxford, 1962). [Google Scholar]
  15. D. Kavitha, C. Namasivayam, Experimental and kinetic studies on methylene blue adsorption by coir pith carbon, Bioresour. Technol. 98 (2007) 14–21. [CrossRef] [Google Scholar]
  16. H.K. Boparai, M. Joseph, D.M. O’Carroll, Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovalent iron particles, J. Hazard. Mater. 186 (2011) 458–465. [CrossRef] [Google Scholar]
  17. G.E. Boyd, A.W. Adamson, L.S. Meyers, The exchange adsorption of ions from aqueous solution by organic zeolites. II. Kinetics, J. Am. Chem. Soc. 69 (1947) 2836–2848. [CrossRef] [Google Scholar]
  18. D. Reichenberg, Properties of ion exchange resins in relation to their structure. III. Kinetics of exchange, J. Am. Chem. Soc. 75 (1953) 589–597. [CrossRef] [Google Scholar]
  19. R.R. Mohammed, M.R. Ketabchi, G. McKay, Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME), Chem. Eng. J. 243 (2014) 31–42. [CrossRef] [Google Scholar]
  20. R.R. Mohammed, M.F. Chong, Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent, J. Environ. Manage. 132 (2014) 237–249. [CrossRef] [Google Scholar]
  21. J. Gao, D. Kong, Y. Wang, J. Wu, S. Sun, P. Xu, Production of mesoporous activated carbon from tea fruit peel residues and its evaluation of methylene blue removal from aqueous solutions, BioResour. 8 (2013) 2145–2160. [Google Scholar]
  22. Y.S. Ho, G. McKay, Application of kinetic models to the sorption of copper (II) on to peat, Adsorpt. Sci. Technol. 20 (2002) 797–815. [CrossRef] [Google Scholar]
  23. R. M. Ali, H. A. Hamad, M. M. Hussein, G. F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng. 91 (2016) 317–332. [CrossRef] [Google Scholar]
  24. H. Wang, X. Yuan, Y. Wu, G. Zeng, H. Dong, X. Chen, L. Leng. Z. Wu, L. Peng, In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis, Appl. Catal., B: Environ. 186 (2016) 19–29. [CrossRef] [Google Scholar]
  25. T. Anitha, P. S. Kumar, K. S. Kumar, B. Ramkumar, S. Ramaligam, Adsorptive removal of Pb(II) ions from polluted water by newly synthesized chitosan-polyacrylonitrile blend: Equilibrium, kinetic, mechanism and thermodynamic approach, Process Saf. Environ. Prot. 98 (2015) 187–197. [CrossRef] [Google Scholar]
  26. S. Duan, R. Tang, Z. Xue, X. Zhang, Y. Zhao, W. Zhang, J. Zhang, B. Wang, S. Zeng, D. Sun, Effective removal of Pb(II) using magnetic Co0.6Fe2.4O4 micro-particles as the adsorbent: Synthesis and study on the kinetic and thermodynamic behaviors for its adsorption, Colloids Surf., A: Physicochem Eng. Asp. 469 (2015) 211–223. [CrossRef] [Google Scholar]
  27. S. Nethaji, A. Sivasamy, A. B. Mandal, Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, Int. J. Environ. Sci. Technol. 10 (2013) 231–242. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.