Issue |
MATEC Web Conf.
Volume 87, 2017
The 9th International Unimas Stem Engineering Conference (ENCON 2016) “Innovative Solutions for Engineering and Technology Challenges”
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 6 | |
Section | Chemical Engineering | |
DOI | https://doi.org/10.1051/matecconf/20178703009 | |
Published online | 12 December 2016 |
Palm oil mill effluent treatment using coconut shell – based activated carbon: Adsorption equilibrium and isotherm
1 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
2 Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
a Corresponding author: awitan@unimas.my
The current ponding system applied for palm oil mill effluent (POME) treatment often struggle to comply with the POME discharge limit, thus it has become a major environmental concern. Batch adsorption study was conducted for reducing the Chemical Oxygen Demand (COD), Total Suspended Solids (TSS) and Color of pre-treated POME using coconut shell-based activated carbon (CS-AC). The CS-AC showed BET surface area of 744.118 m2/g, with pore volume of 04359cm3/g. The adsorption uptake was studied at various contact time and POME initial concentration. The CS-AC exhibited good ability with average percentage removal of 70% for COD, TSS and Color. The adsorption uptake increased over time and attained equilibrium in 30 hours. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Based on the coefficient regression and sum of squared errors, the Langmuir isotherm described the adsorption of COD satisfactorily, while best described the TSS and Color adsorption; giving the highest adsorption capacity of 10.215 mg/g, 1.435 mg/g, and 63.291 PtCo/g respectively. The CS-AC was shown to be a promising adsorbent for treating POME and was able to comply with the Environmental Quality Act (EQA) discharge limit. The outcome of treated effluent using CS-AC was shown to be cleaner than the industrial biologically treated effluent, achieved within shorter treatment time.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.