Open Access
MATEC Web Conf.
Volume 80, 2016
NUMIFORM 2016: The 12th International Conference on Numerical Methods in Industrial Forming Processes
Article Number 02005
Number of page(s) 6
Section MS2: Microstructure modeling in forming processes
Published online 24 October 2016
  1. A. D. Rollett, Overview of modeling and simulation of recrystallization, Progress in Materials Science, 42, 79–99 (1997). [Google Scholar]
  2. K. Okuda and A.D. Rollett, Monte Carlo simulation of elongated recrystallized grains in steels, Computational Materials Science, 34, 264–273 (2005). [CrossRef] [Google Scholar]
  3. G. Kugler and R. Turk, Modeling the dynamic recrystallization under multi-stage hot deformation, Acta Materialia, 52, 4659–4668 (2004). [Google Scholar]
  4. K. Piekos, J. Tarasiuk, K. Wierzbanowski, B. Bacroix, Generalized vertex model of recrystallization – Application to polycrystalline copper, Computational Materials Science 42, 584–594 (2008). [CrossRef] [Google Scholar]
  5. R. Darvishi Kamachali, S. Kim, I. Steinbach, Texture evolution in deformed AZ31 magnesium sheets: Experiments and phase-field study, Computational Materials Science 104, 193–199 (2015). [CrossRef] [Google Scholar]
  6. Y. Jin, N. Bozzolo, A.D. Rollett, and M. Bernacki, 2D finite element modeling of anisotropic grain growth in polycrystalline materials: level set versus multi-phase-field method, Computational Materials Science, 104, 108–123 (2015). [Google Scholar]
  7. M. Bernacki, H. Resk, T. Coupez, and R. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simul. Mater. Sci. Eng. 17, 064006 (2009). [Google Scholar]
  8. M. Bernacki, R. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, 64, 525–528 (2011). [Google Scholar]
  9. M. Shakoor, B. Scholtes, P.-O. Bouchard and M. Bernacki, An efficient and parallel level set reinitialization method – Application to micromechanics and microstructural evolutions, Applied Mathematical Modelling, 39, 7291–7302 (2015). [Google Scholar]
  10. B. Liu, D. Raabe, F. Roters, P. Eisenlohr and R.A. Lebensohn, Comparison of finite element and fast fourier transform crystal plasticity solvers for texture prediction, Modelling and Simul. Mater. Sci. Eng. 18, 085005 (2010). [Google Scholar]
  11. A. Laasraoui and J.J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates, Metallurgical Transactions A, 22, 1545–1558 (1991). [CrossRef] [Google Scholar]
  12. E.P. Busso, F.T. Meissonnier and N.P. O’Dowd, Gradientdependent deformation of two-phase single crystals, Mechanics and Physics of Solids, 48, 2333–2361 (2000). [CrossRef] [Google Scholar]
  13. B. Scholtes, M. Shakoor, A. Settefrati, P.-O. Bouchard, N. Bozzolo and M. Bernacki, New finite element developments for the full field modeling of microstructural evolutions using the level-set method, Computational Materials Science, 109, 388–398 (2015). [Google Scholar]
  14. B. Scholtes, R. Boulais-Sinou, A. Settefrati, D. Pino Muñoz, I. Poitrault, A. Montouchet, N. Bozzolo, and M. Bernacki, 3D level set modeling of static recrystallization considering stored energy fields, Computational Materials Science, 122, 57–71 (2016). [Google Scholar]
  15. K. Huang, Towards the modelling of recrystallization phenomena in multi-pass conditions: application to 304L steel, PhD thesis, MINES ParisTech (2011). [Google Scholar]
  16. A. L. C. Fabiano, Modelling of crystal plasticity and grain boundary motion of 304L steel at the mesoscopic scale, PhD thesis, MINES ParisTech (2012). [Google Scholar]
  17. K. Hitti, P. Laure, T. Coupez, L. Silva and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, 61, 224–238 (2012). [Google Scholar]
  18. H. Resk, L. Delannay, M. Bernacki, T. Coupez and R. Logé, Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations, Modelling and Simul. Mater. Sci. Eng. 17, 075012 (2009). [Google Scholar]
  19. B. Scholtes, M. Shakoor, N. Bozzolo, P.-O. Bouchard, A. Settefrati, and M. Bernacki, Advances in level-set modeling of recrystallization at the polycrystal scale - development of the digi-μ software, Key Engineering Materials, 651–653, 617–623 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.