Open Access
Issue
MATEC Web Conf.
Volume 80, 2016
NUMIFORM 2016: The 12th International Conference on Numerical Methods in Industrial Forming Processes
Article Number 02004
Number of page(s) 8
Section MS2: Microstructure modeling in forming processes
DOI https://doi.org/10.1051/matecconf/20168002004
Published online 24 October 2016
  1. Castillo, F. J. Kampas, and J. D. Pintér. Solving circle packing problems by global optimization: Numerical results and industrial applications. Eur. J. Oper. Res., 191:786–802, (2008). [CrossRef] [Google Scholar]
  2. W. Q. Huang, Y. Li, B. Jurkowiak, Ch. M. Li, and R. Ch. Xu. A two-level search strategy for packing unequal circles into a circle container. In Principles and Practice of Constraint Programming, (2003). [Google Scholar]
  3. W. Q. Huang, Y. Li, H. Akeb, and C. M. Li. Greedy algorithms for packing unequal circles into a rectangular container. J. Oper. Res. Soc., 56:539–548, (2005). [CrossRef] [Google Scholar]
  4. Yu. G. Stoyan and G. Yas’kov. A mathematical model and a solution method for the problem of placing various-sized circles into a strip. Eur. J. Oper. Res., 156:590–600, (2004). [CrossRef] [Google Scholar]
  5. J. Kallrath. Cutting circles and polygons from areaminimizing rectangles. J. Glob. Optim., 43:299–328, (2009). [CrossRef] [Google Scholar]
  6. L. Madej, K. Pasternak, J. Szyndler and W. Wajda. Development of the modified cellular automata sphere growth model for creation of the digital material representations. Key Eng. Materials, 611–612:489–496, (2014). [CrossRef] [Google Scholar]
  7. J. Kallrath and S. Rebennack. Cutting ellipses from area-minimizing rectangles. J. Glob. Optim., 59:405–437, (2014). [CrossRef] [Google Scholar]
  8. K. Hitti. Direct numerical simulation of complex Representative Volume Elements (RVEs): Generation, resolution and homogenization. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, (2011). [Google Scholar]
  9. K. Hitti and M. Bernacki. Optimized dropping and rolling (ODR) method for packing of poly-disperse spheres. Appl. Math. Model., 37:5715–5722, (2013). [CrossRef] [Google Scholar]
  10. Y. T. Feng, K. Han, and D. R. J. Owen. Filling domains with disks: an advancing front approach. Int. J. Numer. Meth. Engng, 56:699–713, (2003). [CrossRef] [Google Scholar]
  11. Y. Shi and Y. Zhang. Simulation of random packing of spherical particles with different size distributions. Appl. Phys. A, 92:621–626, (2008). [CrossRef] [Google Scholar]
  12. A. Benabbou, H. Borouchaki, P. Laug, and J. Lu. Sphere packing and applications to granular structure modeling. In RaoV. Garimella, Editor, Proceedings of the 17th International Meshing Roundtable, pages 1–18. Springer Berlin Heidelberg, (2008). [CrossRef] [Google Scholar]
  13. A. Benabbou, H. Borouchaki, P. Laug, and J. Lu. Numerical modelling of nanostructured materials. Finite Elem. Anal. Des., 46(1–2):165–180, (2010). [CrossRef] [Google Scholar]
  14. K. Bagi. An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter., 7:31–43, (2005). [CrossRef] [Google Scholar]
  15. A. Donev, S. Torquato, and F. H. Stillinger. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details. J. Comput. Phys., 202:737–764, (2005). [CrossRef] [Google Scholar]
  16. A. Donev, S. Torquato, and F. H. Stillinger. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. II. Applications to ellipses and ellipsoids. J. Comput. Phys., 202:765–793, (2005). [Google Scholar]
  17. A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato. Underconstrained jammed packings of nonspherical hard particles: Ellipses and ellipsoids. Phys. Rev. E, 75 051304, (2007). [CrossRef] [MathSciNet] [Google Scholar]
  18. R. M. Baram and P. G. Lind. Deposition of general ellipsoidal particles. Phys. Rev. E, 85 041301, (2012). [CrossRef] [Google Scholar]
  19. J. Buchalter and R. M. Bradley. Orientational order in amorphous packings of ellipsoids. Europhys. Lett, 26(3):159–164, (1994). [CrossRef] [Google Scholar]
  20. G. Delaney, D. Weaire, S. Hutzler, and S. Murphy. Random packing of elliptical disks. Phil. Mag. Lett., 85 (2):89–96, (2005). [CrossRef] [Google Scholar]
  21. C.-Y. Wang and V.-C. Liang. A packing generation scheme for the granular assemblies with planar elliptical particles. Int. J. Numer. Anal. Meth. Geomech., 21:347–358, (1997). [CrossRef] [Google Scholar]
  22. C.-Y. Wang, C.-F. Wang, and J. Sheng. A packing generation scheme for the granular assemblies with 3D ellipsoidal particles. Int. J. Numer. Anal. Meth. Geomech., 23:815–828, (1999). [CrossRef] [Google Scholar]
  23. Y. T. Feng, K. Han, and D. R. J. Owen. An advancing front packing of polygons, ellipses and spheres. In R. P. Jensen B. K. Cook, editor, Discrete Element Methods. ASCE: New York, (2002). [Google Scholar]
  24. W. X. Xu, H. S. Chen, and Z. Lv. An overlapping detection algorithm for random sequential packing of elliptical particles. Physica A, 390:2452–2467, (2011). [CrossRef] [Google Scholar]
  25. D. Markauskas, R. Kacianauskas, A. Dziugys, and R. Navakas. Investigation of adequacy of multisphere approximation of elliptical particles for dem simulations. Granular Matter, 12:107–123, (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.