Open Access
MATEC Web Conf.
Volume 80, 2016
NUMIFORM 2016: The 12th International Conference on Numerical Methods in Industrial Forming Processes
Article Number 01003
Number of page(s) 7
Section MS1: Generalized continua and nonlocal formulations
Published online 24 October 2016
  1. M. Avrami, “Kinetics of phase change. III: Granulation, Phase Change and Microstructure,” Journal of Chemical Physics, pp. 177–184, 1941. [Google Scholar]
  2. A. N. Kolmogorov, “Statistical theory of crystallization of metals,” Izvestia Akademia Nauk SSSR Ser. Mathematica, pp. 355–359, 1937. [Google Scholar]
  3. W. A. Mehl and R. F. Johnson, “Reaction Kinetics in processes of nucleation and growth,” Transactions of American Institute of Minin and Metallurgical Engineers, pp. 416–458, 1939. [Google Scholar]
  4. I. Steinbach and O. Shchyglo, “Phase-field modelling of microstructure evolution in solids: Perspectives and challenges,” Current Opinion in Solid State and Materials Science, pp. 87–92, 2011. [CrossRef] [Google Scholar]
  5. I. Steinbach, “Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale,” 01 Jan, pp. 89–107, 2013. [Google Scholar]
  6. L. Q. Chen, “Phase-field models for microstructure evolution,” Annu. Rev. Mater. Res, 01 Jan, 2002. [Google Scholar]
  7. M. Muramatsu, Y. Aoyagi, Y. Tadano, and K. Shizawa, “Phase-field simulation of static recrystallization considering nucleation from subgrains and nucleus growth with incubation period,” Computational Materials Science, 01 Jan, pp. 112–122, 2014. [Google Scholar]
  8. N. Moelans, B. Blanpain, and P. Wollants, “An introduction to phase-field modeling of microstructure evolution Comput. Coupling Phase Diagr,” Thermochem, 01 Jan, 2008. [Google Scholar]
  9. O. Güvenc, M. Bambach, and G. Hirt, “Coupling of Crystal Plasticity Finite Element and Phase Field Methods for the Prediction of SRX Kinetics after Hot Working,” steel research international, 01 Jan, pp. 999–1009, 2014. [CrossRef] [Google Scholar]
  10. T. J. Baron, K. Khlopkov, T. Pretorius, D. Balzani, D. Brands, and J. Schröder, “Modeling of Microstructure Evolution with Dynamic Recrystallization in Finite Element Simulations of Martensitic Steel,” Steel research, 01 Jan, 2015. [Google Scholar]
  11. D. Peirce, A. Asaro, and R. J. Needleman, “An analysis of non-uniform and localized deformation in ductile single crystals,” Acta Metallurgica, 01 Jan, pp. 1087–1119, 1982. [CrossRef] [Google Scholar]
  12. J. W. Hutchinson, “Elastic-Plastic Behaviour of Polycrystalline Metals and Composites,” Proc. R. Soc. Lond. A, 01 Jan, pp. 247–272, 1970. [CrossRef] [Google Scholar]
  13. J. Pan and R. J. R, “Rate Sensitivity of Plastic Flow and Implications for Yield Surface Vertices,” International Journal of Solids and Structures, 01 Jan, pp. 973–987, 1983. [CrossRef] [Google Scholar]
  14. E. Borukhovich, P. S. Engels, T. Böhlke, and O. Shchyglo, “Large strain elasto-plasticity for diffuse interface models,” Modelling and Simulation in Materials Science and Engineering, 01 Jan, 2014. [Google Scholar]
  15. M. Verdier, Y. Brechet, and P. Guyot, “Recovery of AlMg Alloys: Flow Stress and Strain-Hardening Properties,” Acta Materialia, 01 Jan, 1999. [Google Scholar]
  16. G. I. Taylor, “The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical,” Proceedings of the Royal Society of London, 01 Jan, pp. 362–387, 1934. [CrossRef] [Google Scholar]
  17. C. Zener and J. H. Hollomon, “Effect of Strain Rate Upon Plastic Flow of Steel,” J. Appl. Phys, 01 Jan, 1944. [Google Scholar]
  18. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, J. J.D.M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, and A. D. Rollett, “Current issues in recrystalliszation: a review,” Material Science and Engineering, 01 Jan, pp. 219–274, 1997. [CrossRef] [Google Scholar]
  19. F. J. Humphreys and M. Hatherly, Recrystallization and related Annealing Phenomena: Pergamon, 1995. [Google Scholar]
  20. C. M. Sellars and J. A. Whiteman, “Recrystallization and Grain Growth in Hot Rolling,” Metall Science, 01 Jan, pp. 187–194, 1997. [Google Scholar]
  21. P. J. Wray, “On set of recrystallization during the tensile deformation of austenitic iron at intermediate strain rates,” Metall. Trans, 01 Jan, pp. 1197–1203, 1975. [CrossRef] [Google Scholar]
  22. E. I. Poliak and J. J. Jonas, “A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization,” Acta Materialia, 01 Jan, 1996. [Google Scholar]
  23. J. Kestin, Article in Patterns, Defects and Microstructures in Non-Equilibrium Systems: Martinus Nijhoff, 1987. [Google Scholar]
  24. M. G. Beghi, C. E. Bottani, and G. Caglioti, “Thermoelastic-Plastic Transition and Dislocation Dynamics in Metals by Deformation Calorimetry,” NATO ASI Series, pp. 187–201. [Google Scholar]
  25. P. A. Beck and P. R. Sperry, “Strain induced boundary migration in high purity aluminum,” Journal of Applied Physics, 01 Jan, pp. 150–152, 1950. [CrossRef] [Google Scholar]
  26. R. D. Kamachali, Grain boundary motion in polycrystalline materials. Bochum, 2012. [Google Scholar]
  27. I. Steinbach, “Phase-field models in materials science,” Modelling Simul. Mater. Sci. Eng, 01 Jan, pp. 1–31, 2009. [Google Scholar]
  28. H. M. Ledbetter and R. P. Reed, “Elastic Properties of Metals and Alloys,” J. Phys. Chem. Ref. Data, 01 Jan, pp. 531–617, 1973. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.