Open Access
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
Article Number 06011
Number of page(s) 5
Section Energy Utilization and Environmental Monitoring
Published online 03 October 2016
  1. R. Akikur, R. Saidur, H. Ping, K. Ullah. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: a review. Renew. Sustainable Energy Rev., 27(3), 738–752, (2013). [Google Scholar]
  2. Kasra Mohammadia, Shahaboddin Shamshirband, Chong Wen Tong, Khubaib Amjad Alam, Dalibor Petković. Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Conv. and Mgmt. 93, 406–513, (2015). [CrossRef] [Google Scholar]
  3. M. Benghanema, A Mellit, S N Alamri. ANN-based modelling and estimation of daily global solar radiation data: A case study. Energy Conv. and Mgmt. 50(7), 1644–1655, (2009). [CrossRef] [Google Scholar]
  4. J. D. Brock, R. F. Bruce, M. E. Cameron. Changing the world with a Raspberry Pi. Journal of Computing Sciences 29(2), 151–153, (2013). [Google Scholar]
  5. Vladimir Vujovic, Mirjana Maksimovic. Raspberry Pi as a Sensor Web node for home automation. Computers and Electrical Engg., 44, 153–171, (2014). [CrossRef] [Google Scholar]
  6. R Abd Rahim, M.N.S. Zainudin, M.M. Ismail, M.A. Othman,. Image-based Solar Tracker Using Raspberry Pi. Journal of Multidisciplinary Engineering Science and Technology 1(5), 369–373, (2014). [Google Scholar]
  7. R. Deepan, Santhana Vikrama Rajavarman , K. Narasimhan. Hand Gesture Based Control of Robotic Hand using Raspberry Pi Processor. Asian Journal of Scientific Research 8(3), 392–402, (2015). [CrossRef] [Google Scholar]
  8. I. Divya PriyaHarish. Raspberry PI Based Underwater Vehicle for Monitoring Aquatic Ecosystem. International Journal of Engineering Trends and Applications 2(2), 65–71, (2015). [Google Scholar]
  9. Ganesh. V. Bhat, Anandraddi Naduvinamani. Real Time ECG Acquisition System using Raspberry PI. International Journal of Engineering Sciences and Research Technology 3(6), 464–468, (2014). [Google Scholar]
  10. Gurjashan Singh Pannu, Mohammad Dawud Ansar, Pritha Gupta. Design and Implementation of Autonomous Car using Raspberry Pi. International Journal of Computer Applications, 113(9), 22–29, (2015). [Google Scholar]
  11. Amit Kumar Yadav, S.S. Chandel. Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews, 33, 772–781, (2014). [Google Scholar]
  12. M. Benghanema, A. Mellit, S.N. Alamri. ANN-based modelling and estimation of daily global solar radiation data: A case study. Energy Conversion and Management, 50(7), 1644–1655, (2009). [Google Scholar]
  13. Ozgür Çelik, Ahmet Teke, H. Bas Yildirim. The optimized artificial neural network model with Levenberg Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production journal, 1, 1–12, (2016). [Google Scholar]
  14. M Mohandes, S Rehman, Halawani To. Estimation of global solar radiation using artificial neural networks. Renewable Energy, 14, (1-4), 179–184, (1998). [CrossRef] [Google Scholar]
  15. T Muneer, M. Asif, J. Kubie. Generation and transmission prospects for solar electricity: UK and global markets. Energy Conv. & Mgmt., 44(1), 35–52, (2003). [Google Scholar]
  16. National Renewable Energy Laboratory [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.