Open Access
Issue
MATEC Web Conf.
Volume 76, 2016
20th International Conference on Circuits, Systems, Communications and Computers (CSCC 2016)
Article Number 04015
Number of page(s) 4
Section Computers
DOI https://doi.org/10.1051/matecconf/20167604015
Published online 21 October 2016
  1. Akdere M., Cetintemel U., & Upfal E. (2009, August). Database-Support for Continuous Prediction Queries over Streaming Data. Providence, Rhode Island, USA. [Google Scholar]
  2. Chen A., Leung M., & Daouk H. (2003). Application of Neural Networks to an Emerging Financial Market: Forecasting and Trading the Taiwan Stock Index. Computers & Operations Research, 901–923. [CrossRef] [Google Scholar]
  3. Cherewyk P. (2015). Calculating Covariance For Stocks. Retrieved from Investopedia: http://www.investopedia.com/articles/financial-theory/11/calculating-covariance.asp [Google Scholar]
  4. Economic Research Federal Reserve Bank of St. Louis. 2000. S&P 500© (SP500). [ONLINE] Available at: https://research.stlouisfed.org/fred2/series/SP500/downloaddata. [Accessed 15 July 15]. [Google Scholar]
  5. Hajari H., & Hakimpour F. (February 2014). A Spatial Data Model For Moving Objects Database. International Journal of Database Management Systems (IJDMS) Vol.6, No.1. [Google Scholar]
  6. Imfeld S., & P., L. (2002). Analyzing Relative Motion within Groups of rackable Moving Point Objects. Information Systems. [Google Scholar]
  7. Kara Y., Boyaciglu M. A., & Baykan O. K. (2011). Predicting Direction of Stock Price Index Movement Using Artificial Neural Networks and Support Vector Machines. Expert Systems with Applications, 5311–5320. [CrossRef] [Google Scholar]
  8. Kays R., Li Z., Ji M., Lee J.-G., Tang L.-A., Yu Y., & Han J. (2011). MoveMine: Mining Moving Objects Database. Illinois. [Google Scholar]
  9. Kin T., Wu F., Li Z., & Han J. (2013). MoveMine 2.0: Mining Object Relationships From Movement Data. Penssylvania & Illnois. [Google Scholar]
  10. Li Z., Ding B., Wu F., Lei T. K., Kays R., & Crofoot M. C. (2014). Attraction and Avoidance Detection From Movements. Pennsylvania, USA. [Google Scholar]
  11. Mahajan K. S., & Kulkarni R. (2013). A Review: Application of Datamining Tools For Stock Market. Kolhapur, India: Institude of Business Education & Research Center. [Google Scholar]
  12. Olaniyi A. S., Adewole K. S., & Jimoh R. G. (2011). Stock Trend Prediction Using Regression Analysis: A Data Mining Approach. ARPN Journal of Systems and Software, 4. [Google Scholar]
  13. Pena J. H., & Santos M. Y. (2011). Representing, Storing and Mining Moving Objects Data. World Congress on Engineering. London: WCE. [Google Scholar]
  14. Stock Charts. (2015). Technical Indicators and Overlays. Retrieved from Stock Charts: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:correlation_coeffici [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.