Open Access
MATEC Web Conf.
Volume 75, 2016
2016 International Conference on Measurement Instrumentation and Electronics (ICMIE 2016)
Article Number 03001
Number of page(s) 4
Section Signal Processing and Pattern Recognition
Published online 01 September 2016
  1. Randen, T. and Husoy, J.H., Filtering for texture classification: A comparative study. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (1999). 21(4): pp. 291–310 [CrossRef]
  2. Haralick, R.M., Statistical and structural approaches to texture. Proceedings of the IEEE, (1979). 67(5): pp. 786–804 [CrossRef]
  3. Chen, J.-L. and Kundu, A., Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (1994). 16(2): pp. 208–214 [CrossRef]
  4. Lazebnik, S., Schmid, C., and Ponce, J., A sparse texture representation using local affine regions. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (2005). 27(8): pp. 1265–1278 [CrossRef]
  5. Mehta, R. and Egiazarian, K., Texture Classification Using Dense Micro-block Difference (DMD), in Computer Vision--ACCV 2014. (2014), Springer. pp. 643–658.
  6. Varma, M. and Zisserman, A., A statistical approach to texture classification from single images. International Journal of Computer Vision, (2005). 62(1-2): pp. 61–81 [CrossRef]
  7. Ojala, T., Pietikäinen, M., and Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (2002). 24(7): pp. 971–987 [CrossRef]
  8. Mehta, R. and Egiazarian, K., Dominant Rotated Local Binary Patterns (DRLBP) for texture classification. Pattern Recognition Letters, (2016). 71: pp. 16–22 [CrossRef]
  9. Zhao, G., et al., Rotation-invariant image and video description with local binary pattern features. Image Processing, IEEE Transactions on, (2012). 21(4): pp. 1465–1477 [CrossRef]
  10. Qian, X., et al., PLBP: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recognition, (2011). 44(10): pp. 2502–2515 [CrossRef]
  11. Liao, S., Law, M.W., and Chung, A., Dominant local binary patterns for texture classification. Image Processing, IEEE Transactions on, (2009). 18(5): p. 1107–1118 [CrossRef]
  12. Guo, Y., et al., Descriptor learning based on fisher separation criterion for texture classification, in Computer Vision–ACCV 2010. (2010), Springer. pp. 185–198
  13. Tai, S.-C., Chen, Z.-S., and Tsai, W.-T., An automatic mass detection system in mammograms based on complex texture features. Biomedical and Health Informatics, IEEE Journal of, (2014). 18(2): pp. 618–627 [CrossRef]
  14. Gupta, V., Chaurasia, V., and Shandilya, M., Random-valued impulse noise removal using adaptive dual threshold median filter. Journal of Visual Communication and Image Representation, (2015). 26: pp. 296–304 [CrossRef]
  15. Gonzalez, R.C. and Woods, R.E., Digital image processing. (2002): Prentice hall Upper Saddle River
  16. Jog, A. and Halbe, S., Multiple Objects Tracking Using CAMShift Algorithm and Implementation of Trip Wire. International Journal of Image, Graphics and Signal Processing, (2013). 5(6): p. 43 [CrossRef]
  17. Mane, S.A. and Kulhalli, K., Mammogram Image Features Extraction And Classification For Breast Cancer Detection. (2015)
  18. Jin, F., et al., Image Restoration Based on Wiener Filtering Journal of communication university of china (Science and Technology), (2011). 4: p. 005
  19. Zhou, X., et al., Detection of pathological brain in MRI scanning based on wavelet-entropy and naive bayes classifier, in Bioinformatics and biomedical engineering. (2015), Springer. pp. 201–209
  20. Platt, J.C., Cristianini, N., and Shawe-Taylor, J. Large Margin DAGs for Multiclass Classification. in nips. (1999)
  21. Tuceryan, M. and Jain, A., Textures: a photographic album for artists and designers. (1966), Dover Publications
  22. The USC-SIPI, I.d. (1977) [cited 2016 November]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.