Open Access
Issue
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00033
Number of page(s) 5
DOI https://doi.org/10.1051/matecconf/20167400033
Published online 29 August 2016
  1. Salit, M.S., Tropical Natural Fiber Composite; Properties, Manufacture and Applications. 2014. 1.
  2. Goulart, S.A.S., et al., Mechanical Behaviour of Polypropylene Reinforced Palm Fibers Composites. Procedia Engineering, 2011. 10: p. 2034–2039. [CrossRef]
  3. Fiore, V., G. Di Bella, and A. Valenza, The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 2015. 68: p. 14–21. [CrossRef]
  4. Nirmal, U., J. Hashim, and M.M.H. Megat Ahmad, A review on tribological performance of natural fibre polymeric composites. Tribology International, 2015. 83: p. 77–104. [CrossRef]
  5. Wu, Z.-J., F.-M. Li, and Y.-Z. Wang, Vibration band gap behaviors of sandwich panels with corrugated cores. Computers & Structures, 2013. 129: p. 30–39. [CrossRef]
  6. Zhang, P., et al., Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading. Marine Structures, 2015. 40: p. 225–246. [CrossRef]
  7. Rejab, M. and W. Cantwell, The mechanical behaviour of corrugated-core sandwich panels. Composites Part B: Engineering, 2013. 47: p. 267–277. [CrossRef]
  8. Rejab, M., K. Ushijima, and W. Cantwell, The shear response of lightweight corrugated core structures. Journal of Composite Materials, 2013: p. 0021998313514086.
  9. Bartolozzi, G., N. Baldanzini, and M. Pierini, Equivalent properties for corrugated cores of sandwich structures: A general analytical method. Composite Structures, 2014. 108: p. 736–746. [CrossRef]
  10. Zhang, J., et al., Improving the bending strength and energy absorption of corrugated sandwich composite structure. Materials & Design, 2013. 52: p. 767–773. [CrossRef]
  11. Wei, K., et al., Fabrication and mechanical properties of lightweight ZrO2 ceramic corrugated core sandwich panels. Materials & Design, 2014. 64: p. 91–95. [CrossRef]
  12. Yan, L.L., et al., Three-point bending of sandwich beams with aluminum foam-filled corrugated cores. Materials & Design, 2014. 60: p. 510–519. [CrossRef]
  13. Lim, J.-Y. and H. Bart-Smith, Theoretical approach on the dynamic global buckling response of metallic corrugated core sandwich columns. International Journal of Non-Linear Mechanics, 2014. 65: p. 14–31. [CrossRef]
  14. Zhang, P., et al., Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading – An experimental study. Materials & Design, 2015. 65: p. 221–230. [CrossRef]
  15. L. Nicolais, A.B., Wiley Encyclopedia of Composites - Natural Fibres. 2012. 5 Vol Set - 2nd Ed.
  16. Salleh, Z., et al., Fracture Toughness Investigation on Long Kenaf/Woven Glass Hybrid Composite Due To Water Absorption Effect. Procedia Engineering, 2012. 41: p. 1667–1673. [CrossRef]
  17. Mahjoub, R., et al., Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 2014. 55: p. 103–113. [CrossRef]
  18. Elsaid, A., et al., Mechanical properties of kenaf fiber reinforced concrete. Construction and Building Materials, 2011. 25(4): p. 1991–2001. [CrossRef]
  19. Mazuki, A.A.M., et al., Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Composites Part B: Engineering, 2011. 42(1): p. 71–76. [CrossRef]
  20. Davoodi, M.M., et al., Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials & Design, 2010. 31(10): p. 4927–4932. [CrossRef]
  21. Meon, M.S., et al., Improving Tensile Properties of Kenaf Fibers Treated with Sodium Hydroxide. Procedia Engineering, 2012. 41: p. 1587–1592. [CrossRef]
  22. Summerscales, J., et al., A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 2010. 41(10): p. 1329–1335. [CrossRef]
  23. Vijayakumar, S., et al., Mechanical and Microstructure Characterization of Coconut Spathe Fibers and Kenaf Bast Fibers Reinforced Epoxy Polymer Matrix Composites. Procedia Materials Science, 2014. 5: p. 2330–2337. [CrossRef]
  24. Ghosh, R., et al., Water Absorption Kinetics and Mechanical Properties of Ultrasonic Treated Banana Fiber Reinforced-vinyl Ester Composites. Procedia Materials Science, 2014. 5: p. 311–315. [CrossRef]
  25. Singh, S., et al., Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-recycled HDPE Matrix Composites. Procedia Materials Science, 2014. 6: p. 1696–1702. [CrossRef]
  26. Kumar, R., et al., Study of Mechanical Properties of Wood Dust Reinforced Epoxy Composite. Procedia Materials Science, 2014. 6: p. 551–556. [CrossRef]
  27. Mishra, V. and S. Biswas, Physical and Mechanical Properties of Bi-directional Jute Fiber Epoxy Composites. Procedia Engineering, 2013. 51: p. 561–566. [CrossRef]
  28. Prasad, V., et al., Finite Element Analysis of Jute and Banana Fibre Reinforced Hybrid Polymer Matrix Composite and Optimization of Design Parameters Using ANOVA Technique. Procedia Engineering, 2014. 97: p. 1116–1125. [CrossRef]
  29. Sgriccia, N., M.C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 2008. 39(10): p. 1632–1637. [CrossRef]
  30. Rassmann, S., R.G. Reid, and R. Paskaramoorthy, Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing, 2010. 41(11): p. 1612–1619. [CrossRef]
  31. Ramesh, M., et al., Processing and Mechanical Property Evaluation of Banana Fiber Reinforced Polymer Composites. Procedia Engineering, 2014. 97: p. 563–572. [CrossRef]
  32. Srinivasababu, N., J.S. Kumar, and K.V.K. Reddy, Manufacturing and Characterization of Long Palmyra Palm/Borassus Flabellifer Petiole Fibre Reinforced Polyester Composites. Procedia Technology, 2014. 14: p. 252–259. [CrossRef]
  33. Bhoopathi, R., M. Ramesh, and C. Deepa, Fabrication and Property Evaluation of Banana-Hemp-Glass Fiber Reinforced Composites. Procedia Engineering, 2014. 97: p. 2032–2041. [CrossRef]
  34. Bartolozzi, G., et al., An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels. Composite Structures, 2013. 100: p. 173–185. [CrossRef]
  35. Buannic, N., P. Cartraud, and T. Quesnel, Homogenization of corrugated core sandwich panels. Composite Structures, 2003. 59(3): p. 299–312. [CrossRef]
  36. Liu, P., Y. Liu, and X. Zhang, Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact. International Journal of Impact Engineering, 2015. 77: p. 120–133. [CrossRef]
  37. Magnucka-Blandzi, E., K. Magnucki, and L. Wittenbeck, Mathematical modeling of shearing effect for sandwich beams with sinusoidal corrugated cores. Applied Mathematical Modelling, 2015. 39(9): p. 2796–2808. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.