Open Access
Issue
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00033
Number of page(s) 5
DOI https://doi.org/10.1051/matecconf/20167400033
Published online 29 August 2016
  1. Salit, M.S., Tropical Natural Fiber Composite; Properties, Manufacture and Applications. 2014. 1. [Google Scholar]
  2. Goulart, S.A.S., et al., Mechanical Behaviour of Polypropylene Reinforced Palm Fibers Composites. Procedia Engineering, 2011. 10: p. 2034–2039. [CrossRef] [Google Scholar]
  3. Fiore, V., G. Di Bella, and A. Valenza, The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering, 2015. 68: p. 14–21. [CrossRef] [Google Scholar]
  4. Nirmal, U., J. Hashim, and M.M.H. Megat Ahmad, A review on tribological performance of natural fibre polymeric composites. Tribology International, 2015. 83: p. 77–104. [CrossRef] [Google Scholar]
  5. Wu, Z.-J., F.-M. Li, and Y.-Z. Wang, Vibration band gap behaviors of sandwich panels with corrugated cores. Computers & Structures, 2013. 129: p. 30–39. [CrossRef] [Google Scholar]
  6. Zhang, P., et al., Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading. Marine Structures, 2015. 40: p. 225–246. [CrossRef] [Google Scholar]
  7. Rejab, M. and W. Cantwell, The mechanical behaviour of corrugated-core sandwich panels. Composites Part B: Engineering, 2013. 47: p. 267–277. [CrossRef] [Google Scholar]
  8. Rejab, M., K. Ushijima, and W. Cantwell, The shear response of lightweight corrugated core structures. Journal of Composite Materials, 2013: p. 0021998313514086. [Google Scholar]
  9. Bartolozzi, G., N. Baldanzini, and M. Pierini, Equivalent properties for corrugated cores of sandwich structures: A general analytical method. Composite Structures, 2014. 108: p. 736–746. [CrossRef] [Google Scholar]
  10. Zhang, J., et al., Improving the bending strength and energy absorption of corrugated sandwich composite structure. Materials & Design, 2013. 52: p. 767–773. [CrossRef] [Google Scholar]
  11. Wei, K., et al., Fabrication and mechanical properties of lightweight ZrO2 ceramic corrugated core sandwich panels. Materials & Design, 2014. 64: p. 91–95. [CrossRef] [Google Scholar]
  12. Yan, L.L., et al., Three-point bending of sandwich beams with aluminum foam-filled corrugated cores. Materials & Design, 2014. 60: p. 510–519. [CrossRef] [Google Scholar]
  13. Lim, J.-Y. and H. Bart-Smith, Theoretical approach on the dynamic global buckling response of metallic corrugated core sandwich columns. International Journal of Non-Linear Mechanics, 2014. 65: p. 14–31. [CrossRef] [Google Scholar]
  14. Zhang, P., et al., Dynamic response of metallic trapezoidal corrugated-core sandwich panels subjected to air blast loading – An experimental study. Materials & Design, 2015. 65: p. 221–230. [CrossRef] [Google Scholar]
  15. L. Nicolais, A.B., Wiley Encyclopedia of Composites - Natural Fibres. 2012. 5 Vol Set - 2nd Ed. [Google Scholar]
  16. Salleh, Z., et al., Fracture Toughness Investigation on Long Kenaf/Woven Glass Hybrid Composite Due To Water Absorption Effect. Procedia Engineering, 2012. 41: p. 1667–1673. [CrossRef] [Google Scholar]
  17. Mahjoub, R., et al., Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials, 2014. 55: p. 103–113. [CrossRef] [Google Scholar]
  18. Elsaid, A., et al., Mechanical properties of kenaf fiber reinforced concrete. Construction and Building Materials, 2011. 25(4): p. 1991–2001. [CrossRef] [Google Scholar]
  19. Mazuki, A.A.M., et al., Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Composites Part B: Engineering, 2011. 42(1): p. 71–76. [CrossRef] [Google Scholar]
  20. Davoodi, M.M., et al., Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials & Design, 2010. 31(10): p. 4927–4932. [CrossRef] [Google Scholar]
  21. Meon, M.S., et al., Improving Tensile Properties of Kenaf Fibers Treated with Sodium Hydroxide. Procedia Engineering, 2012. 41: p. 1587–1592. [CrossRef] [Google Scholar]
  22. Summerscales, J., et al., A review of bast fibres and their composites. Part 1 – Fibres as reinforcements. Composites Part A: Applied Science and Manufacturing, 2010. 41(10): p. 1329–1335. [CrossRef] [Google Scholar]
  23. Vijayakumar, S., et al., Mechanical and Microstructure Characterization of Coconut Spathe Fibers and Kenaf Bast Fibers Reinforced Epoxy Polymer Matrix Composites. Procedia Materials Science, 2014. 5: p. 2330–2337. [CrossRef] [Google Scholar]
  24. Ghosh, R., et al., Water Absorption Kinetics and Mechanical Properties of Ultrasonic Treated Banana Fiber Reinforced-vinyl Ester Composites. Procedia Materials Science, 2014. 5: p. 311–315. [CrossRef] [Google Scholar]
  25. Singh, S., et al., Tensile and Flexural Behavior of Hemp Fiber Reinforced Virgin-recycled HDPE Matrix Composites. Procedia Materials Science, 2014. 6: p. 1696–1702. [CrossRef] [Google Scholar]
  26. Kumar, R., et al., Study of Mechanical Properties of Wood Dust Reinforced Epoxy Composite. Procedia Materials Science, 2014. 6: p. 551–556. [CrossRef] [Google Scholar]
  27. Mishra, V. and S. Biswas, Physical and Mechanical Properties of Bi-directional Jute Fiber Epoxy Composites. Procedia Engineering, 2013. 51: p. 561–566. [CrossRef] [Google Scholar]
  28. Prasad, V., et al., Finite Element Analysis of Jute and Banana Fibre Reinforced Hybrid Polymer Matrix Composite and Optimization of Design Parameters Using ANOVA Technique. Procedia Engineering, 2014. 97: p. 1116–1125. [CrossRef] [Google Scholar]
  29. Sgriccia, N., M.C. Hawley, and M. Misra, Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 2008. 39(10): p. 1632–1637. [CrossRef] [Google Scholar]
  30. Rassmann, S., R.G. Reid, and R. Paskaramoorthy, Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Composites Part A: Applied Science and Manufacturing, 2010. 41(11): p. 1612–1619. [CrossRef] [Google Scholar]
  31. Ramesh, M., et al., Processing and Mechanical Property Evaluation of Banana Fiber Reinforced Polymer Composites. Procedia Engineering, 2014. 97: p. 563–572. [CrossRef] [Google Scholar]
  32. Srinivasababu, N., J.S. Kumar, and K.V.K. Reddy, Manufacturing and Characterization of Long Palmyra Palm/Borassus Flabellifer Petiole Fibre Reinforced Polyester Composites. Procedia Technology, 2014. 14: p. 252–259. [CrossRef] [Google Scholar]
  33. Bhoopathi, R., M. Ramesh, and C. Deepa, Fabrication and Property Evaluation of Banana-Hemp-Glass Fiber Reinforced Composites. Procedia Engineering, 2014. 97: p. 2032–2041. [CrossRef] [Google Scholar]
  34. Bartolozzi, G., et al., An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels. Composite Structures, 2013. 100: p. 173–185. [CrossRef] [Google Scholar]
  35. Buannic, N., P. Cartraud, and T. Quesnel, Homogenization of corrugated core sandwich panels. Composite Structures, 2003. 59(3): p. 299–312. [CrossRef] [Google Scholar]
  36. Liu, P., Y. Liu, and X. Zhang, Internal-structure-model based simulation research of shielding properties of honeycomb sandwich panel subjected to high-velocity impact. International Journal of Impact Engineering, 2015. 77: p. 120–133. [CrossRef] [Google Scholar]
  37. Magnucka-Blandzi, E., K. Magnucki, and L. Wittenbeck, Mathematical modeling of shearing effect for sandwich beams with sinusoidal corrugated cores. Applied Mathematical Modelling, 2015. 39(9): p. 2796–2808. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.