Open Access
Issue
MATEC Web Conf.
Volume 74, 2016
The 3rd International Conference on Mechanical Engineering Research (ICMER 2015)
Article Number 00029
Number of page(s) 6
DOI https://doi.org/10.1051/matecconf/20167400029
Published online 29 August 2016
  1. D. G. Luchinsky, V. Hafiychuk, V. Smelyanskiy, R. Tyson, J. L. Walker, and J. L. Miller, “High-fidelity modeling for health monitoring in honeycomb sandwich structures,” in Aerospace Conference, 2011 IEEE, (2011), pp. 1–7. [Google Scholar]
  2. Y. A. Bruno Castanié, Christophe Bouvet, Jean-Jacques Barrau, “Core crush criterion to determine the strength of sandwich composite structures subjected to compression after impact 2008 Composite Structures.pdf,” Composite Structures, pp. 243–250, (2008). [CrossRef] [Google Scholar]
  3. H. N. Wadley, “Multifunctional periodic cellular metals,” Philos Trans A Math Phys Eng Sci, vol. 364, pp. 31–68, Jan 15 (2006). [CrossRef] [Google Scholar]
  4. A. Mamalis, D. Manolakos, M. Ioannidis, P. Kostazos, and D. Papapostolou, “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modelling,” Composite structures, vol. 58, pp. 571–582, (2002). [CrossRef] [Google Scholar]
  5. S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, and P. Freres, “Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests,” Composite Structures, vol. 87, pp. 265–273, (2009). [CrossRef] [Google Scholar]
  6. H. P. Konka, M. A. Wahab, and K. Lian, “On Mechanical Properties of Composite Sandwich Structures With Embedded Piezoelectric Fiber Composite Sensors,” Journal of Engineering Materials and Technology, vol. 134, p. 011010, (2012). [CrossRef] [Google Scholar]
  7. L. Librescu and T. Hause, “Recent developments in the modeling and behavior of advanced sandwich constructions: a survey,” Composite structures, vol. 48, pp. 1–17, (2000). [CrossRef] [Google Scholar]
  8. S. Heimbs, “Virtual testing of sandwich core structures using dynamic finite element simulations,” Computational Materials Science, vol. 45, pp. 205–216, (2009). [CrossRef] [Google Scholar]
  9. F. Abbassi, S. Mistou, and A. Zghal, “Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests,” Materials & Design, vol. 49, pp. 638–646, (2013). [CrossRef] [Google Scholar]
  10. H. A. Katzman, R. M. Castaneda, and H. S. Lee, “Moisture diffusion in composite sandwich structures,” Composites Part A: Applied Science and Manufacturing, vol. 39, pp. 887–892, (2008). [CrossRef] [Google Scholar]
  11. C. C. Foo, G. B. Chai, and L. K. Seah, “Mechanical properties of Nomex material and Nomex honeycomb structure,” Composite Structures, vol. 80, pp. 588–594, (2007). [CrossRef] [Google Scholar]
  12. A. Petras and M. Sutcliffe, “Failure mode maps for honeycomb sandwich panels,” Composite Structures, vol. 44, pp. 237–252, (1999). [CrossRef] [Google Scholar]
  13. H. Zhao, I. Elnasri, and Y. Girard, “Perforation of aluminium foam core sandwich panels under impact loading—An experimental study,” International Journal of Impact Engineering, vol. 34, pp. 1246–1257, (2007). [CrossRef] [Google Scholar]
  14. M. R. M. Rejab and W. J. Cantwell, “The mechanical behaviour of corrugated-core sandwich panels,” Composites Part B: Engineering, vol. 47, pp. 267–277, (2013). [CrossRef] [Google Scholar]
  15. M. Yamashita and M. Gotoh, “Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment,” International Journal of Impact Engineering, vol. 32, pp. 618–630, (2005). [CrossRef] [Google Scholar]
  16. L. Aktay, A. F. Johnson, and B.-H. Kröplin, “Numerical modelling of honeycomb core crush behaviour,” Engineering Fracture Mechanics, vol. 75, pp. 2616–2630, (2008). [CrossRef] [Google Scholar]
  17. A. Abbadi, Y. Koutsawa, A. Carmasol, S. Belouettar, and Z. Azari, “Experimental and numerical characterization of honeycomb sandwich composite panels,” Simulation Modelling Practice and Theory, vol. 17, pp. 1533–1547, (2009). [CrossRef] [Google Scholar]
  18. V. N. Burlayenko and T. Sadowski, “Analysis of structural performance of sandwich plates with foam-filled aluminum hexagonal honeycomb core,” Computational Materials Science, vol. 45, pp. 658–662, (2009). [CrossRef] [Google Scholar]
  19. M. Burman and D. Zenkert, “Fatigue of foam core sandwich beams—1: undamaged specimens,” International journal of fatigue, vol. 19, pp. 551–561, (1997). [CrossRef] [Google Scholar]
  20. C. Chen, A. Harte, and N. Fleck, “The plastic collapse of sandwich beams with a metallic foam core,” International Journal of Mechanical Sciences, vol. 43, pp. 1483–1506, (2001). [CrossRef] [Google Scholar]
  21. V. Crupi and R. Montanini, “Aluminium foam sandwiches collapse modes under static and dynamic three-point bending,” International Journal of Impact Engineering, vol. 34, pp. 509–521, (2007). [CrossRef] [Google Scholar]
  22. A.-M. Harte, N. Fleck, and M. Ashby, “The fatigue strength of sandwich beams with an aluminium alloy foam core,” International Journal of Fatigue, vol. 23, pp. 499–507, (2001). [CrossRef] [Google Scholar]
  23. S. Kazemahvazi, R. Ben, D. Vikram, and D. Zenkert, “Impact properties of corrugated composite sandwich cores,” in International Conference on Sandwich Structures, ICSS9, (2010). [Google Scholar]
  24. W.-S. Chang, E. Ventsel, T. Krauthammer, and J. John, “Bending behavior of corrugated-core sandwich plates,” Composite Structures, vol. 70, pp. 81–89, (2005). [CrossRef] [Google Scholar]
  25. G. Bartolozzi, M. Pierini, U. Orrenius, and N. Baldanzini, “An equivalent material formulation for sinusoidal corrugated cores of structural sandwich panels,” Composite Structures, vol. 100, pp. 173–185, (2013). [CrossRef] [Google Scholar]
  26. F. Côté, V. S. Deshpande, N. A. Fleck, and A. G. Evans, “The compressive and shear responses of corrugated and diamond lattice materials,” International Journal of Solids and Structures, vol. 43, pp. 6220–6242, (2006). [CrossRef] [Google Scholar]
  27. S. Hou, S. Zhao, L. Ren, X. Han, and Q. Li, “Crashworthiness optimization of corrugated sandwich panels,” Materials & Design, vol. 51, pp. 1071–1084, (2013). [CrossRef] [Google Scholar]
  28. N. Buannic, P. Cartraud, and T. Quesnel, “Homogenization of corrugated core sandwich panels,” Composite Structures, vol. 59, pp. 299–312, (2003). [CrossRef] [Google Scholar]
  29. Y. S. Tian and T. J. Lu, “Optimal design of compression corrugated panels,” Thin-Walled Structures, vol. 43, pp. 477–498, (2005). [CrossRef] [Google Scholar]
  30. G. Bartolozzi, N. Baldanzini, and M. Pierini, “Equivalent properties for corrugated cores of sandwich structures: A general analytical method,” Composite Structures, vol. 108, pp. 736–746, (2014). [CrossRef] [Google Scholar]
  31. C. Kılıçaslan, M. Güden, İ. K. Odacı, and A. Taşdemirci, “The impact responses and the finite element modeling of layered trapezoidal corrugated aluminum core and aluminum sheet interlayer sandwich structures,” Materials & Design, vol. 46, pp. 121–133, (2013). [CrossRef] [Google Scholar]
  32. C. Thill, J. A. Etches, I. P. Bond, K. D. Potter, P. M. Weaver, and M. R. Wisnom, “Investigation of trapezoidal corrugated aramid/epoxy laminates under large tensile displacements transverse to the corrugation direction,” Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 168–176, (2010). [CrossRef] [Google Scholar]
  33. C. Kılıçaslan, M. Güden, İ. K. Odacı, and A. Taşdemirci, “Experimental and numerical studies on the quasi-static and dynamic crushing responses of multi-layer trapezoidal aluminum corrugated sandwiches,” Thin-Walled Structures, vol. 78, pp. 70–78, (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.