Open Access
Issue |
MATEC Web Conf.
Volume 68, 2016
2016 The 3rd International Conference on Industrial Engineering and Applications (ICIEA 2016)
|
|
---|---|---|
Article Number | 16006 | |
Number of page(s) | 5 | |
Section | Applied Mathematics | |
DOI | https://doi.org/10.1051/matecconf/20166816006 | |
Published online | 01 August 2016 |
- R. E. Barnhill, Blending function interpolation: a survey and some new results, Numerishe Methoden der Approximationstheorie, 30, Birkhauser-Verlag, Basel, (1976), pp. 43–89. [Google Scholar]
- R. E. Barnhill, Representation and approximation of surfaces, Mathematical Software III, (Ed. J.R. Rice, Academic Press, New-York, 1977), pp. 68–119. [Google Scholar]
- R. E. Barnhill, G. Birkhoff, W. J. Gordon, Smooth interpolation in triangles, J. Approx. Theory, 8, pp. 114–128 (1973). [CrossRef] [Google Scholar]
- R. E. Barnhill, J. A. Gregory, Compatible smooth interpolation in triangles, J. Approx. Theory, 15, pp. 214–225 (1975). [CrossRef] [Google Scholar]
- R. E. Barnhill, J. A. Gregory, Sard kernels theorems on triangular domains with applications to finite element error bounds, Numer. Math., 25, pp. 215–229 (1976). [CrossRef] [Google Scholar]
- C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal., 26, no. 5, pp. 1212–1240 (1989). [CrossRef] [MathSciNet] [Google Scholar]
- M. Bernadou, C1-curved finite elements with numerical integration for thin plate and thin shell problem, Part 1: construction and interpolation properties of curved C1 finite elements, Comput. Methods in Applied Mechanics and Engineering, 102, pp. 255–289 (1993). [CrossRef] [Google Scholar]
- M. Bernadou,, C1-curved finite elements with numerical integration for thin plate and thin shell problems, Part 2 : approximation of thin plate and thin shell problems, Comput. Methods in Appl. Mechanics and Engineering, 102, pp. 389–421 (1993). [CrossRef] [Google Scholar]
- P. Blaga, T. Cătinaş, G. Coman, Bernstein-type operators on tetrahedrons, Studia UBB Math., 54, no. 4, pp. 3–19 (2009). [Google Scholar]
- P. Blaga, T. Cătinaş, Gh. Coman, Bernstein-type operators on a square with one and two curved sides, Studia UBB Math., 55, no. 3, pp. 51–67 (2010). [Google Scholar]
- P. Blaga, T. Cătinaş, G. Coman, Bernstein-type operators on triangle with all curved sides, Appl. Math. Comput., 218, pp. 3072–3082 (2011). [CrossRef] [Google Scholar]
- P. Blaga, T. Cătinaş, G. Coman, Bernstein-type operators on triangle with one curved side, Mediterr. J. Math., 9, No. 4, pp. 843–855 (2012). [CrossRef] [Google Scholar]
- J. C. Cavendish, W.J. Gordon, Ch.A. Hall, Ritz-Galerkin approximations in blending function spaces, Numer. Math., 26, pp. 155–178 (1976). [CrossRef] [Google Scholar]
- E.W. Cheney, A. Sharma, On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5, pp. 77–84 (1964). [Google Scholar]
- G. Coman, T. Cătinaş, Interpolation operators on a tetrahedron with three curved sides, Calcolo, 47, no. 2, pp. 113–128 (2010). [CrossRef] [Google Scholar]
- G. Coman, T. Cătinaş, Interpolation operators on a triangle with one curved side, BIT Numer. Math., 50, no. 2, pp. 243–267 (2010). [CrossRef] [Google Scholar]
- R. Dautray, J.L. Lions, Analyse mathematique et calcul numerique, Vol. 6, Methodes integrales et numeriques, Masson, Paris, pp. 798–834 (1988). [Google Scholar]
- W. J. Gordon, Ch. Hall, Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math., 21, pp. 109–129 (1973). [CrossRef] [Google Scholar]
- W. J. Gordon, J.A. Wixom, Pseudo-harmonic interpolation on convex domains, SIAM J. Numer. Anal., 11, No 5, pp. 909–933 (1974). [CrossRef] [Google Scholar]
- J. A. Marshall, R. McLeod, Curved elements in the finite element method, Conference on Numer. Sol. Diff. Eq., Lectures Notes in Math., 363, Springer Verlag, pp. 89–104 (1974)}. [Google Scholar]
- J. A. Marshall, A. R. Mitchell, An exact boundary technique for improved accuracy in the finite element method, J. Inst. Maths. Applics., 12, pp. 355–362 (1973). [CrossRef] [Google Scholar]
- J. A. Marshall, A. R. Mitchell, Blending interpolants in the finite element method, Inter. J. Numer. Meth. Engineering, 12, pp. 77–83 (1978). [CrossRef] [Google Scholar]
- A. R. Mitchell, R. McLeod, Curved elements in the finite element method, Conference on Numer. Sol. Diff. Eq., Lectures Notes in Mathematics, 363, pp. 89–104 (1974). [CrossRef] [Google Scholar]
- R. J. Renka, A. K. Cline, A triangle-based C1 interpolation method, Rocky Mountain J. Math. 14, pp. 223–237 (1984). [CrossRef] [Google Scholar]
- A. Sard, Linear Approximation, American Mathematical Society, Providence, Rhode Island, 1963. [CrossRef] [Google Scholar]
- D. D. Stancu, C. Cişmaşiu, On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numer. Theor. Approx., 26, pp. 221–227 (1997). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.