Open Access
MATEC Web Conf.
Volume 68, 2016
2016 The 3rd International Conference on Industrial Engineering and Applications (ICIEA 2016)
Article Number 08001
Number of page(s) 5
Section Fluid Mechanics and Application
Published online 01 August 2016
  1. MalinB S. Practical pointers on industrial exhaust system. Heat & Vent, 42: 75–82(1945). [Google Scholar]
  2. Enrique Gonza¡älez, Francisco Marzal, Agustı¡än Miñana, etc. Influence of Exhaust Hood Geometry on the Capture Efficiency of Lateral Exhaust and Push–Pull Ventilation Systems in Surface Treatment Tanks. Environmental Progress, 27(3):405–411, (2008). [CrossRef] [Google Scholar]
  3. Yi Zheng, Magesh Thiruvengadam, Hai Lan. Design of push–pull system to control diesel particular matter.inside a dead-end entry. Int J Coal Sci Technol, 2(3):237–244 (2015). [CrossRef] [Google Scholar]
  4. Guo Peishan, Fu Haiming, Zhao Youjun, et al. Development and present status of push-pull ventilation technology. Journal of HV & AC, 38(4): 57–61 (2008). [Google Scholar]
  5. Michael Robinson, Derek B. Ingham. Design and operating parameters for push‐pull ventilation of open surface tanks. International Journal of Energy Research, 27 (8):757–770(2003). [CrossRef] [Google Scholar]
  6. R. Rota, G. Nano, L. Canossa. Design Guidelines for Push-Pull Ventilation Systems through Computational Fluid Dynamics Modeling. AIHAJ: A Journal for the Science of Occupational & Environmental Health & Safety. 62 (2):141–148 (2001) [Google Scholar]
  7. Hunt G R, Ingham D B. Long range exhaustion--a mathematical model for the axisymmetric air flow of a local exhaust ventilation hood assisted by a turbulent radial jet. The Annals of Occupational Hygiene, 40(2): 171–196(1996). [CrossRef] [Google Scholar]
  8. HeSuyan, Wang Yingmin, Li Yunfei. Flow-field test and simulation of a three-dimensional Aaberg exhaust hood. Journal of Shanghai Jiaotong University, 36(10): 1492–1495(2002). [Google Scholar]
  9. Chen Jiangping, Feng Xin, Mu Jingyang. Numerical simulation of turbulence character the 2-layer non-isothermal blow-draw air-curtain. Journal of Refrigeration, 4: 16–20 (2001). [Google Scholar]
  10. NielsenPV. Computational fluid dynamics and room air movement. Indoor Air, 14:134–143 (2004). [Google Scholar]
  11. K Svidt. Numerical prediction of airflow in a room with ceiling-mounted obstacles.Denmark, Aalborg Universitets center, (1992). [Google Scholar]
  12. WellingI, AnderssonM, RosenG, RäisänenJ, MieloT, MarttinenK, NiemeläR Contaminant dispersion in the vicinity of a worker in a uniform velocity field. Ann Occup Hygiene, 44(3):219–225 (2000). [CrossRef] [Google Scholar]
  13. Xian Xiangli, Chun Holiu, Y.C. DennisLeungK.M.Lam. Recent progress in CFD modeling of wind field and pollutant transport in street canyons. Atmospheric Environment, 40:5640–5658(2006). [Google Scholar]
  14. J.D. Anderson, McGrawHill. Computational Fluid Dynamics: The Basics with Application. Tinghua University Press (1995). [Google Scholar]
  15. Kambiz Nazridoust, Goodzarz Ahmadi. Airflow and pollutant transport in street canyons. Journal of wind Engineering and Industrial Aerodynamics, 94:491–522 (2006). [CrossRef] [Google Scholar]
  16. Tao Wenquan. Numerical Heat Transfer (the 2nd edition). Xi’an: Xi’an Jiaotong University Press (2002). [Google Scholar]
  17. Wang Fujun. Computational Fluid Dynamics. Beijing: Tsinghua University Press (2004). [Google Scholar]
  18. Sun Yijian. Industry Ventilation (the 3rd edition). Beijing: China Building Industry Press (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.