Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 06029
Number of page(s) 10
Section Chapter 6 Materials Science
DOI https://doi.org/10.1051/matecconf/20166706029
Published online 29 July 2016
  1. S.V. Levchik, E.D. Weil, Flame Retardants in Commercial Use or in Advanced Development in Polycarbonates and Polycarbonate Blends, J. Fire Sci., 24(2006) 137–151. [CrossRef] [Google Scholar]
  2. A. Nodera, Flame Retardancy of a Polycarbonate-Polydimethylsiloxane Block Copolymer: the Effect of the Dimethylsiloxane Block Size, J. Appl. Polym. Sci., 100(2006) 565–575. [CrossRef] [Google Scholar]
  3. Z. Tang, Y. Li, Y. J. Zhang, Oligomeric Siloxane Containing Triphenylphosphonium Phosphate as a Novel Flame Retardant for Polycarbonate, Polym. Degrad. Stab., 2012, 97, 638–644. [CrossRef] [Google Scholar]
  4. J. Ye, G. Liang, A. Gu, Z. Zhang, Novel Phosphorus-Containing Hyperbranched Polysiloxane and its High Performance Flame Retardant Cyanate Ester Resins, Polym. Degrad. Stab., 98(2013) 597–608. [CrossRef] [Google Scholar]
  5. X. Wang, Y. Hu, L. Song, H. Yang, Comparative Study on the Synergistic Effect of POSS and Graphene with Melamine Phosphate on the Flame Retardance of Poly(butylene succinate), Thermochim. Acta, 543 (2012) 156–164. [CrossRef] [Google Scholar]
  6. X. Chen, C. Jiao, Synergistic Effects of Hydroxyl Silicone Oil on Intumescent Flame Retardant Polypropylene System, Fire Safety J., 44 (2009) 1010–1014. [CrossRef] [Google Scholar]
  7. K.H. Pawlowski, B. Schartel, Flame Retardancy Mechanisms of Aryl Phosphates in Combination with Bboehmite in Bisphenol A Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends, Polym. Degrad. Stab., 93(2008) 657–667. [CrossRef] [Google Scholar]
  8. K.H. Pawlowski, B. Schartel, and M.A. Fichera, Flame Retardancy Mechanisms of Bisphenol A Bis(diphenyl phosphate) in Combination with Zinc Borate in Bisphenol A Polycarbonate/Acrylonitrile -Butadiene-Styrene Blends, Thermochim. Acta, 498 (2010) 92–99. [CrossRef] [Google Scholar]
  9. K.H. Pawlowski, and B. Schartel, Flame Retardancy Mechanisms of Triphenyl Phosphate, Resorcinol Bis(diphenyl phosphate) and Bisphenol A Bis(diphenyl phosphate) in Bisphenol A Polycarbonate/Acrylonitrile -Butadiene-Styrene Blends, Polym. Int., 56 (2007) 1404–1414. [CrossRef] [Google Scholar]
  10. A. Nodera, T. Kanai, Flame Retardancy of Polycarbonate-Polydimethylsiloxane Block Copolymer/Silica Nanocomposites, J. Appl. Polym. Sci., 101 (2006) 3862–3868. [CrossRef] [Google Scholar]
  11. M. Iji, S. Serizawa, Silicone Derivatives as New Flame Retardants for Aromatic Thermoplastics Used in Electronic Devices, Polym. Adv. Technol., 9 (1998) 593–600. [CrossRef] [Google Scholar]
  12. A. Genovese, R.A. Shanks, Fire Performance of Poly(dimethyl siloxane) Composites Evaluated by Cone Calorimetry, Composites Part A: applied science and manufacturing, 39 (2008) 398–405. [CrossRef] [Google Scholar]
  13. K. Chen, W. Zhou, J. Song. Preparation and Application of Polysiloxane Flame Retardant, China Plastics, 2009, 23 (2009) 87–90. [Google Scholar]
  14. W. Zhou, H. Yang, Flame Retarding Mechanism of Polycarbonate Containing Methylphenyl-Silicone, Thermochim. Acta, 2007, 452 (2007) 43–48. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.