Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 04008
Number of page(s) 7
Section Chapter 4 Surface Engineering and Coating Technology
DOI https://doi.org/10.1051/matecconf/20166704008
Published online 29 July 2016
  1. J. Benick, B. Hoex, M.C.M. van de Sanden, W.M.M. Kessels, O. Schultz, and S.W. Glunz, High efficiency n-type Si solar cells on Al2O3-passivated boron emitters, Applied Physics Letters 92 (2008) 253504. [CrossRef] [Google Scholar]
  2. L. Tous, M. Aleman, R. Russell, E. Cornagliotti, P. Choulat, A. Uruena, S. Singh, J. John, F. Duerinckx, J. Poortmans and R. Mertens, Evaluation of advanced p-PERL and n -PERT large area silicon solar cells with 20.5% energy conversion efficiencies, Progress in Photovoltaics: Research and Applications 23 (2015) 660–670. [Google Scholar]
  3. A. Lanterne, S. Gall, Y. Veschetti, R. Cabal, M. Coig, F. Milési, A. Tauzin, High efficiency fully implanted and co-annealed bifacial n-type solar cells, Energy Procedia 38 (2013) 283–288. [CrossRef] [Google Scholar]
  4. D. Macdonald, L.J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon, Applied Physics Letters 85 (2004) 4061–4063. [CrossRef] [Google Scholar]
  5. K. Bothe, J. Schmidt, Electronically activated boron-oxygen-related recombination centers in crystalline silicon, Journal of Applied Physics 99 (2006) 013701. [CrossRef] [Google Scholar]
  6. A.R. Burgers, L.J. Geerligs, A.J. Carr, A. Gutjahr, D.S Saynova, J.F. Xiong, G.F. Li, Z. Xu, H.F. Wang, H. An, Z.Y. Hu, P.R. Venema, A.H.G. Vlooswijk, 19.5% efficient n -type Si solar cells made in production, 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011 pp. 1144–1147. [Google Scholar]
  7. H. Nagayama, H. Honda, H. Kawahara, A new process for silica coating, Journal of the Electrochemical Society 135 (1988) 2013–2016. [CrossRef] [Google Scholar]
  8. C.J. Huang, Quality optimization of liquid phase deposition SiO2 films on silicon, Japanese Journal of Applied Physics 41 (2002) 4622–4625. [CrossRef] [Google Scholar]
  9. H.C. Yuan, J.H. Oh, Y. C. Zhang, O. A. Kuznetsov, D. J. Flood, H.M. Branz, Antireflection and SiO2 surface passivation by liquid-phase chemistry for efficient black silicon solar cells, 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 686–689. [Google Scholar]
  10. J. He, Y.C. Ke, G.L. Zhang, Q.C. Deng, H. Shen, S.C. Lu, M.R. Qin, X. Wang, C.L. Zeng, Liquid phase deposited SiO2 on multi-crystalline silicon, Polymers Research Journal 9 (2015) 57–65. [Google Scholar]
  11. B.C. Hsu, W.C. Hua, C.R. Shie, K.F. Chen, C.W. Liu, Growth and electrical characteristics of liquid-phase deposited SiO2 on Ge, Electrochemical and Solid-State L etters 6 (2003) F9–F11. [CrossRef] [Google Scholar]
  12. C.J. Huang, J.-R. Chen, S.P. Huang, Silicon dioxide passivation of gallium arsenide by liquid phase deposition, Materials Chemistry and Physics 70 (2001) 78–83. [CrossRef] [Google Scholar]
  13. H.R. Wu, K.W. Lee, T.B. Nian, D.W. Chou, J.J. Huang Y.H. Wu M.P. Wang P.W. Houng Y.K. Sze S.J. Su C.H. Chang C.I. Ho Y.T. Chiang F.S. Chern T.C. Juang W.I. Wen J.I. Lee Chyi, Liquid phase deposited SiO2 on GaN, Materials Chemistry and Physics 80 (2003) 329–333. [CrossRef] [Google Scholar]
  14. B. Heox, F.J.J. Peeters, M. Creatore, M. A. Blauw, W.M.M. Kessels, M.C.M. van de Sanden, High-rate plasma-deposited SiO2 films for surface passivattion of crystalline silicon, Journal of Vacuum Science and Technology A 24 (2006) 1823–1830. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.