Open Access
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02011
Number of page(s) 8
Section Chapter 2 Electronic Technology
Published online 29 July 2016
  1. J. R. Swedlow, I. Goldberg, E. Brauner, P. K. Sorger, Informatics and quantitative analysis in biological imaging, Science. 300 (2003) 100–102. [CrossRef] [Google Scholar]
  2. C. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev. 112 (2012) 4687–4735. [CrossRef] [Google Scholar]
  3. K. Li, B. Liu, Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging, J. Mater. Chem. 22 (2012) 1257–1264. [CrossRef] [Google Scholar]
  4. R. M. Hoffman, The multiple uses of fluorescent proteins to visualize cancer in vivo, Nat. Rev. Cancer. 5 (2005) 796–806. [CrossRef] [Google Scholar]
  5. N. M. Idris, Z. Q. Li, L. Ye, et al. Stem sell tracking with optically active nanoparticles, Biomaterials. 30 (2009) 5104–5113. [CrossRef] [Google Scholar]
  6. J. H. Kim, Y. S. Kim, K. Park, et al, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J. Controlled Release. 127 (2008) 41–49. [CrossRef] [Google Scholar]
  7. K. Yang, S. Zhang, G. X. Zhong, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318–3323. [CrossRef] [Google Scholar]
  8. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21 (2003) 47–51. [CrossRef] [Google Scholar]
  9. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970. [Google Scholar]
  10. S. A. Jenekhe, J. A. Osaheni, Excimers and exciplexes of conjugated polymers, Science. 265 (1994) 765–768. [CrossRef] [PubMed] [Google Scholar]
  11. Y. N. Hong, J. W. Y. Lam, B. Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40 (2011) 5361–5388. [CrossRef] [Google Scholar]
  12. Y. Yu, C. Feng, Y. Hong, et al. Cytophilic fluorescent bioprobes for long-term cell tracking, Adv. Mater. 23 (2011) 3298–3302. [CrossRef] [Google Scholar]
  13. Y. Liu, C. M. Deng, L. Tang, et al. Specific detection of d-glucose by tetraphenylethene-based fluorescent sensor, J. Am. Chem. Soc. 133 (2011) 660–663. [CrossRef] [Google Scholar]
  14. M. Li, Y. N. Hong, Z. K. Wang, et al. Fabrication of chitosan nanoparticles with aggregation-induced emission characteristics and their applications in long-term live cell imaging, Macromol. Rapid Commun. 34 (2013) 767–771. [CrossRef] [Google Scholar]
  15. T. Sanji, K. Shiraishi, M. Nakamura, M. Tanaka, Fluorescence turn-on sensing of lectins with mannose-substituted tetraphenylethenes based on aggregation-induced emission, J. Chem. Asian. 5 (2010) 817–824. [CrossRef] [Google Scholar]
  16. G. X. Feng, C. Y. Tay, Q. X. Chui, et al. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking, Biomaterials. 35 (2014) 8669–8677 [CrossRef] [Google Scholar]
  17. M. C. Woodle, Controlling liposome blood clearance by surfance grafted polymers, Adv. Drug Delivery Rev. 32 (1998) 139–152. [CrossRef] [Google Scholar]
  18. J. M. Harris, S. Zaplisky, Poly(ethylene glycol): chemistry and biomedical applications, American Chemical Society, Washington DC, 1997. [CrossRef] [Google Scholar]
  19. B. X. Gao, H. X. Li, H. M. Liu, et al. Water-soluble and fluorescent dendritic perylene bisimides for live-cell imaging, Chem. Commun. 47 (2011) 3894–3896. [CrossRef] [Google Scholar]
  20. H. M. Liu, Y. L. Wang, C. H. Liu, et al. Fluorescent water-soluble probes based on dendritic PEG substituted perylene bisimides: synthesis, photophysical properties, and live cell images, J. Mater. Chem. 22 (2012) 6176–6181. [CrossRef] [Google Scholar]
  21. L. B. Bai, W. Li, J. T. Chen, et al. Water-soluble fluorescent probes based on dendronized polyfluorenes for cell imaging, Macromolecular. Rapid Commun. 34 (2013) 539–547. [CrossRef] [Google Scholar]
  22. Li. K. Kai, W. Qin, D. Ding, et al. Polycationic adamantane-based dendrons of different generations display high cellular uptake without triggering cytotoxicity, J. Am. Chem. Soc. 136 (2014) 810–819. [CrossRef] [Google Scholar]
  23. T. Ishiyama, Y. Itoh, T. Kitano, N. Miyaura, Synthesis of arylboronates via the palladium(0)-catalyzed cross-coupling reaction of tetra(alkoxo)diborons with aryl triflates, Tetrahedron Lett. 38 (1997) 3447–3450. [CrossRef] [Google Scholar]
  24. Tean-d’ Amour K. Twibanire and T. Bruce Grindley, Efficient and controllably selective preparation of esters using uronium-based coupling agents, Organic letters. 13 (2011) 2988–2911. [CrossRef] [Google Scholar]
  25. J. W. Barr, T. W. Bell, V. J. Catalano, et al. Syntheses, structures, and photoisomerization of (E)- and (Z)-2-tert-butyl-9-(2,2,2-triphenylethylidene)fluorene, J. Phys. Chem. A. 109 (2005) 11650–11654. [CrossRef] [Google Scholar]
  26. Q. Zhao, et al. Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical property and ordered microstructures, J. Mater. Chem. 22 (2012) 7387–7394. [CrossRef] [Google Scholar]
  27. Q. Peng, Y. Yi, Z. Shuai, J. Shao, Toward quantitative prediction of molecular fuorescence quantum efficiency: role of duschinsky rotation, J. Am. Chem. Soc. 129 (2007) 9333–9339. [CrossRef] [Google Scholar]
  28. X. W. Long, Zh. H. Zhang, Sh. C. Han, et al. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity, ACS Appl. Master. interfaces. 7 (2015) 7542–7551. [CrossRef] [Google Scholar]
  29. J. M. Harris and R. B. Chess, Effect of pegylation on pharmaceutical, Nat. Rev. Drug Discovery. 2 (2003) 214–221. [CrossRef] [Google Scholar]
  30. H. Huang, B. Yu, P. Zhang, et al. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy, Angew. Chem. Int. Ed. 127 (2015) 14255–14258. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.