Open Access
Issue
MATEC Web Conf.
Volume 67, 2016
International Symposium on Materials Application and Engineering (SMAE 2016)
Article Number 02011
Number of page(s) 8
Section Chapter 2 Electronic Technology
DOI https://doi.org/10.1051/matecconf/20166702011
Published online 29 July 2016
  1. J. R. Swedlow, I. Goldberg, E. Brauner, P. K. Sorger, Informatics and quantitative analysis in biological imaging, Science. 300 (2003) 100–102. [CrossRef]
  2. C. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Water-soluble conjugated polymers for imaging, diagnosis, and therapy, Chem. Rev. 112 (2012) 4687–4735. [CrossRef]
  3. K. Li, B. Liu, Polymer encapsulated conjugated polymer nanoparticles for fluorescence bioimaging, J. Mater. Chem. 22 (2012) 1257–1264. [CrossRef]
  4. R. M. Hoffman, The multiple uses of fluorescent proteins to visualize cancer in vivo, Nat. Rev. Cancer. 5 (2005) 796–806. [CrossRef]
  5. N. M. Idris, Z. Q. Li, L. Ye, et al. Stem sell tracking with optically active nanoparticles, Biomaterials. 30 (2009) 5104–5113. [CrossRef]
  6. J. H. Kim, Y. S. Kim, K. Park, et al, Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice, J. Controlled Release. 127 (2008) 41–49. [CrossRef]
  7. K. Yang, S. Zhang, G. X. Zhong, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318–3323. [CrossRef]
  8. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat. Biotechnol. 21 (2003) 47–51. [CrossRef]
  9. J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London, 1970.
  10. S. A. Jenekhe, J. A. Osaheni, Excimers and exciplexes of conjugated polymers, Science. 265 (1994) 765–768. [CrossRef] [PubMed]
  11. Y. N. Hong, J. W. Y. Lam, B. Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40 (2011) 5361–5388. [CrossRef]
  12. Y. Yu, C. Feng, Y. Hong, et al. Cytophilic fluorescent bioprobes for long-term cell tracking, Adv. Mater. 23 (2011) 3298–3302. [CrossRef]
  13. Y. Liu, C. M. Deng, L. Tang, et al. Specific detection of d-glucose by tetraphenylethene-based fluorescent sensor, J. Am. Chem. Soc. 133 (2011) 660–663. [CrossRef]
  14. M. Li, Y. N. Hong, Z. K. Wang, et al. Fabrication of chitosan nanoparticles with aggregation-induced emission characteristics and their applications in long-term live cell imaging, Macromol. Rapid Commun. 34 (2013) 767–771. [CrossRef]
  15. T. Sanji, K. Shiraishi, M. Nakamura, M. Tanaka, Fluorescence turn-on sensing of lectins with mannose-substituted tetraphenylethenes based on aggregation-induced emission, J. Chem. Asian. 5 (2010) 817–824. [CrossRef]
  16. G. X. Feng, C. Y. Tay, Q. X. Chui, et al. Ultrabright organic dots with aggregation-induced emission characteristics for cell tracking, Biomaterials. 35 (2014) 8669–8677 [CrossRef]
  17. M. C. Woodle, Controlling liposome blood clearance by surfance grafted polymers, Adv. Drug Delivery Rev. 32 (1998) 139–152. [CrossRef]
  18. J. M. Harris, S. Zaplisky, Poly(ethylene glycol): chemistry and biomedical applications, American Chemical Society, Washington DC, 1997. [CrossRef]
  19. B. X. Gao, H. X. Li, H. M. Liu, et al. Water-soluble and fluorescent dendritic perylene bisimides for live-cell imaging, Chem. Commun. 47 (2011) 3894–3896. [CrossRef]
  20. H. M. Liu, Y. L. Wang, C. H. Liu, et al. Fluorescent water-soluble probes based on dendritic PEG substituted perylene bisimides: synthesis, photophysical properties, and live cell images, J. Mater. Chem. 22 (2012) 6176–6181. [CrossRef]
  21. L. B. Bai, W. Li, J. T. Chen, et al. Water-soluble fluorescent probes based on dendronized polyfluorenes for cell imaging, Macromolecular. Rapid Commun. 34 (2013) 539–547. [CrossRef]
  22. Li. K. Kai, W. Qin, D. Ding, et al. Polycationic adamantane-based dendrons of different generations display high cellular uptake without triggering cytotoxicity, J. Am. Chem. Soc. 136 (2014) 810–819. [CrossRef]
  23. T. Ishiyama, Y. Itoh, T. Kitano, N. Miyaura, Synthesis of arylboronates via the palladium(0)-catalyzed cross-coupling reaction of tetra(alkoxo)diborons with aryl triflates, Tetrahedron Lett. 38 (1997) 3447–3450. [CrossRef]
  24. Tean-d’ Amour K. Twibanire and T. Bruce Grindley, Efficient and controllably selective preparation of esters using uronium-based coupling agents, Organic letters. 13 (2011) 2988–2911. [CrossRef]
  25. J. W. Barr, T. W. Bell, V. J. Catalano, et al. Syntheses, structures, and photoisomerization of (E)- and (Z)-2-tert-butyl-9-(2,2,2-triphenylethylidene)fluorene, J. Phys. Chem. A. 109 (2005) 11650–11654. [CrossRef]
  26. Q. Zhao, et al. Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical property and ordered microstructures, J. Mater. Chem. 22 (2012) 7387–7394. [CrossRef]
  27. Q. Peng, Y. Yi, Z. Shuai, J. Shao, Toward quantitative prediction of molecular fuorescence quantum efficiency: role of duschinsky rotation, J. Am. Chem. Soc. 129 (2007) 9333–9339. [CrossRef]
  28. X. W. Long, Zh. H. Zhang, Sh. C. Han, et al. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity, ACS Appl. Master. interfaces. 7 (2015) 7542–7551. [CrossRef]
  29. J. M. Harris and R. B. Chess, Effect of pegylation on pharmaceutical, Nat. Rev. Drug Discovery. 2 (2003) 214–221. [CrossRef]
  30. H. Huang, B. Yu, P. Zhang, et al. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy, Angew. Chem. Int. Ed. 127 (2015) 14255–14258. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.