Open Access
MATEC Web Conf.
Volume 63, 2016
2016 International Conference on Mechatronics, Manufacturing and Materials Engineering (MMME 2016)
Article Number 04020
Number of page(s) 4
Section Information Technology, Control and Application
Published online 12 July 2016
  1. Chen Y., Dass S., Ross A., & Jain A. Fingerprint deformation models using minutiae locations and orientations. Appeared in Proc. of IEEE Workshop on Applications of Computer Vision (WACV), (Breckenridge, Colorado), 150–156.(2005) [Google Scholar]
  2. Ji C., Feng W., Li M., &Yang J. Dynamic Threshold with Hole Padding Algorithm for Fingerprint Image BinariZation. Computer Simulation, 28(7), 258–261. (2011) [Google Scholar]
  3. Mayur D Jain, Nalin Pradeep S, Prakash C and Balasubramanian Raman, Binary tree based linear time fingerprint matching. 309–312. (2006) [Google Scholar]
  4. Liu Y., Cao J., Xu Z., Tian Y., Fu T., & Wang F., Improvement of image matching algorithm based on gray correlation. Journal of Applied Optics. 28(5), 536–540(2007) [Google Scholar]
  5. Zhao J., &Wang D. The implementation of a fingerprint matching algorithm. Computer Engineering and Applications, 13, 66–69. (2005) [CrossRef] [Google Scholar]
  6. Wang J., Chen S., & Sun S., Realization of the fingerprint image enhancement based on matlab. Electronic Science and Technology. 6, 37–39. (2009). [Google Scholar]
  7. Wang Y., & Su C., Study of fingerprint image enhancement algorithm. science technology and Engineering, 10(1), 94–98.(2010) [Google Scholar]
  8. Wang Y., Ning X., & Yin Y., Study on the fingerprint image thinning algorithm. Journal of Nanjing University (Natural Sciences), 39(4), 468–475. (2003) [Google Scholar]
  9. Xiao X., Wang K., & Li Z., mproved thinning method to fingerprint image. Computer Applications, 28(2), 466–468.(2008) [CrossRef] [Google Scholar]
  10. Yang W., Guo K., & Wei Y., An efficient index thinning algorithm of fingerprint image based on eight neighborhood point. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 21(2), 61–63. (2008) [Google Scholar]
  11. Guo J., Wu Q., & Shang Q., Minutiae extraction of fingerprint image based on matlab. Computer Simulation, 24(1),182–185.(2007) [Google Scholar]
  12. Liao K., Zhang X., Zhang M., & Pan X, Extraction of minutiae and significant feature from fingerprint image. Computer Applications, 28(9), 2312–2314. (2008). [CrossRef] [Google Scholar]
  13. Shang Q., Wu Q., & Guo J. Preprocessing algorithm of fingerprint image based on matlab. Computer Simulation, 24(3), 215–218.(2007) [Google Scholar]
  14. Tai Y. Fingerprint processing algorithm based on matlab. Journal of Southwest University for nationalities (Natural Science Edition), 34(4), 836–838.(2008). [Google Scholar]
  15. Wu J., Xu C., Yang K., & Zhang G., Study of essential technology for fingerprint image Pre-processing.Computer Engineering and Applications, 44(3), 223–239.(2008) [Google Scholar]
  16. Xue J., Wang S., & Liu Z., Adaptive pre-processing for fingerprint image. Computer Engineering and Design, 29(1), 157–159. (2008) [Google Scholar]
  17. Ye Q. Study of a fingerprint pre-processing and matching algorithm. Journal of North China University of Technology Beijing China, 24(3), 6–10. (2012). [Google Scholar]
  18. Wang Guwen, Cao Yu MATLAB6. 5 graphics image processing [M]. Beijing: national defence industry press, (2004) [Google Scholar]
  19. RuanQiuqi. Digital image processing [M]. Beijing: electronic industry press, (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.