Open Access
MATEC Web Conf.
Volume 63, 2016
2016 International Conference on Mechatronics, Manufacturing and Materials Engineering (MMME 2016)
Article Number 04006
Number of page(s) 4
Section Information Technology, Control and Application
Published online 12 July 2016
  1. M. Turk, A.P. Pentland, Eigenfaces for recognition, J. Cognitive Neurosci.3 (1) (1991)71–86. [Google Scholar]
  2. P.N. Belhumeur, J. Hespanha, D.J. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intel. 20 (7) (1997) 711–720. [CrossRef] [Google Scholar]
  3. M. S. Bartlett, J. R. Movellan, T.J. Sejnowski, Face recognition by independent component analysis, IEEE Transactions on Neural Networks.13 (6)(2002) 1450–1464. [CrossRef] [Google Scholar]
  4. L. Wiskott, J.M. Fellows, N. Kruger, C.V. Makburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal.Mach. Intell.19 (1997) 775–779. [Google Scholar]
  5. G. Guo, S.Z. Li, K.L. Chan, Support vector machines for face recognition, Image and Vision Computing. 19 (9-10) (2001) 631–638. [CrossRef] [Google Scholar]
  6. J.B. Tenenbaum, V. de Silva, J.C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science. 290 (5500) (2000) 2319–2323. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  7. S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science. 290 (5500) (2000) 2323–2326 [Google Scholar]
  8. L.K. Saul, S.T. Roweis, Think globally, fit locally: unsupervised learning of low dimensional manifolds, J.Mach. Learning. Res. (4) (2003) 119–155. [Google Scholar]
  9. M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: T.G. Dietterich, S. Becker, Z. Ghahramani(Eds.), Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge, MA, USA, 2002, 585–591. [Google Scholar]
  10. M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput.15 (6) (2003)1373–1396. [Google Scholar]
  11. X. He, S. Yan, Hu, P. Niyogi, H. Zhang, Face recognition using Laplacianfaces, IEEE Trans. Pattern Anal. Mach. Intell. 27 (3) (2005) 328–340. [CrossRef] [Google Scholar]
  12. C.H. Liu, Nonsymmetric entropy and maximum nonsymmetric entropy principle, Chaos, Solitons & Fractals. 40 (5) (2009) 2469–2474 [CrossRef] [Google Scholar]
  13. C.E. Shannon, Bell Syst. Tech. J. 27 (1948) 379–623. [Google Scholar]
  14. Z Szwast, S Sieniutycz, JS. Shiner Complexity principle of extremality in evolution of living organisms by information-theoretic entropy. Chaos, Solitons & Fractals.13 (9) (2002) 1871–1888. [CrossRef] [Google Scholar]
  15. P Allegrini, P Grigolini, L. Palatella Intermittency and scale-free networks: A dynamical model for human language complexity. Chaos, Solitons & Fractals. 20 (1) (2004) 95–105. [CrossRef] [Google Scholar]
  16. V. Gontar Entropy principle of extremality as a driving force in the discrete dynamics of complex and living systems. Chaos, Solitons & Fractals.11 (1–3) (2000) 231–236. [CrossRef] [Google Scholar]
  17. MS. El Naschie Dimensions and Cantor spectra. Chaos, Solitons & Fractals.4 (11) (1994) 2121–2132. [CrossRef] [Google Scholar]
  18. MS. El Naschie On the topological ground state of E-infinity spacetime and the super string connection. Chaos, Solitons &Fractals.32 (2) (2007) 468–70. [CrossRef] [Google Scholar]
  19. MS. El Naschie Superstrings, entropy and the elementary particles content of the standard model. Chaos, Solitons & Fractals.29 (1) (2006) 48–54 [CrossRef] [Google Scholar]
  20. MS. El Naschie Internal Cantor distance and entropy of multidimensional Peano–Hilbert spaces. Chaos, Solitons & Fractals. 1993; 3:361–8. [CrossRef] [Google Scholar]
  21. C. Tsallis Possible generalization of Boltzmann–Gibbs statistics. J Stat Phys.52 (1–2) (1988) 479–487. [Google Scholar]
  22. D.J.C. MacKay, Information Theory, Inference and Learning Algorithms. Cambridge, U.K. Cambridge Univ.Press,2003 [Google Scholar]
  23. Guang Deng, An Entropy Interpretation of the Logarithmic Image Processing Model With Application to Contrast Enhancement, IEEE Transactions on Image Process.18 (5) (2009) 1135–1140. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.