Open Access
Issue
MATEC Web of Conferences
Volume 62, 2016
2016 3rd International Conference on Chemical and Food Engineering
Article Number 04003
Number of page(s) 6
Section Chemistry Engineering
DOI https://doi.org/10.1051/matecconf/20166204003
Published online 28 June 2016
  1. Xia K., Gao Q., Jiang J. & Hu J., 2008. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, Volume 46, pp. 1718–1726. [CrossRef] [Google Scholar]
  2. A.Mecke, I.Lee, J.R.Baker jr., M.M.Banaszak Holl, B.G.Orr, Eur. Phys. J. E 14, 7 (2004) [CrossRef] [EDP Sciences] [Google Scholar]
  3. Halper S. M. & Ellenbogen C. J., 2006. Supercapacitor: A Brief Overview, Virginia: The MITRE Corporation. [Google Scholar]
  4. Pandolfo A. G. & Hollenkamp A. F., 2006. Carbon properties and their role in supercapacitors. Journal of Power Sources, 157(1), pp. 11–27. [Google Scholar]
  5. Jin H., Wang X., Gu Z. & Polin J., 2013. Carbon materials from high ash biochar for supercapacitor and improvement. Journal of Power Sources, Volume 236, pp. 285–292. [CrossRef] [Google Scholar]
  6. JunhuaJianga, LeiZhangb, XinyingWanga, NancyHolma, KishoreRajagopalana, FanglinChenb, ShuguoMa, 2013. Highly ordered macroporous woody biochar with ultra-high carbon content as supercapacitor electrodes. Electrochimica Acta, Volume 113, pp. 481–489. [CrossRef] [Google Scholar]
  7. Kötz R. & Carlen M., 2000. Principles and applications of electrochemical capacitors. Electrochimica Acta, p. 2483–2498. [Google Scholar]
  8. Zhu Y., 2011. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science, Volume 332, pp. 1537–1539. [CrossRef] [PubMed] [Google Scholar]
  9. Balathanigaimani M.., 2008. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications, 10(6), pp. 868–871. [CrossRef] [Google Scholar]
  10. Ito E., 2007. Nanoporous carbons from cypress II. Application to electric double layer capacitors. New Carbon Materials, 22(4), pp. 321–326 [CrossRef] [Google Scholar]
  11. Anjos D. M., 2013. Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy, 2(5), pp. 702–712 [CrossRef] [Google Scholar]
  12. Nor N. S. M., 2015. Influence of gamma irradiation exposure on the performance of supercapacitor electrodes made from oil palm empty fruit bunches. Energy, Volume 79, pp. 183–194. [Google Scholar]
  13. Kuratani K., 2011. Converting rice husk activated carbon into active material for capacitor using three-dimensional porous current collector. Journal of Power Sources, 196(24), pp. 10788–10790. [CrossRef] [Google Scholar]
  14. Sahu V., 2015. Heavily nitrogen doped, graphene supercapacitor from silk cocoon. Electrochimica Acta, Volume 160, pp. 244–253. [CrossRef] [Google Scholar]
  15. Li X. et al., 2011. Bioresource Technology Preparation of capacitor’s electrode from sunflower seed shell. Bioresource Technology, 102(2), pp. 1118–1123. [CrossRef] [Google Scholar]
  16. Wan azlina WanAb Karim Ghani, Gabrielda-Silva and Azil BahariAlias et al., 2011. Physico-chemical characterizations of sawdust-derived biochar as potential solid fuels. Malaysian journal of analytical science, 18(3), pp. 724–729. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.