Open Access
Issue
MATEC Web of Conferences
Volume 58, 2016
The 3rd Bali International Seminar on Science & Technology (BISSTECH 2015)
Article Number 03010
Number of page(s) 4
Section Information Technology and Information Systems
DOI https://doi.org/10.1051/matecconf/20165803010
Published online 23 May 2016
  1. Anggraeny F.T., Widiasri M. 2013. Voting of Artificial Neural Network Particle Swarm Optimization Biclassifier using Gain Ratio Feature Selection. KURSOR Journal: Research on Computing and Its Application, Vol. 7, No. 2, pp. 69-74, ISSN: 0216-0544. [Google Scholar]
  2. Blake C.L., Merz C.J. 1998. University of California at Irvine Repository of Machine Learning Databases, University of California, Irvine, 1998. http://www.ics.uci.edu/mlearn/MLRepository.html. [Google Scholar]
  3. Huang C.L., & Dun J.F. 2008. A distributed PSO–SVM Hybrid System with Feature Selection and Parameter Optimization. Journal of Applied Soft Computing, Vol. 8, Issue 4, pp. 1381–1391. [CrossRef] [Google Scholar]
  4. Huang G.B., Zhu Q.Y., Siew C.K. 2004. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. Proceedings of IEEE International Joint Conference on Neural Network (IJCNN), Vol. 2, pp.985-990. [Google Scholar]
  5. Huang G.B., Zhu Q.Y., Siew C.K. 2006. Extreme Learning Machine: Theory and Applications. Journal of Neurocomputing, Vol. 70, Issues 1-3, pp. 489-501. [CrossRef] [Google Scholar]
  6. Huang G., Huang G.B., Song S., You K. 2015. Trends in Extreme Learning Machine: A review. Journal of Neural Network, Vol. 61, pp. 32-48. [CrossRef] [Google Scholar]
  7. Kanan H.R., Faez K. 2008. An improved feature selection method based on ant colony optimization (ACO) evaluated on face recognition system. Journal of Applied Mathematics and Computation, Vol. 205, Issue 2, pp. 716–725. [CrossRef] [Google Scholar]
  8. Karegowda A.G., Manjunath A.S., Jayaram M.A. 2010. Comparative Study of Attribute Selection Using Gain Ratio Correlation based feature selection. International Journal of Information Technology and Knowledge Management, Vol. 2, No. 2, pp. 271-277. [Google Scholar]
  9. Khushaba R.N., Al-Ani A., Al-Jumaily A. 2011. Feature Subset Selection using Differential Evolution and a Statistical Repair Mechanism. Journal of Expert Systems with Applications, Vol. 38, Issue 9, pp. 11515–11526. [CrossRef] [Google Scholar]
  10. Liao T.W. 2010. Feature extraction and selection from acoustic emission signals with an application in grinding wheel condition monitoring. Journal of Engineering Applications of Artificial Intelligence, Vol. 23, Issue 1, pp. 74–84. [CrossRef] [Google Scholar]
  11. Priyadarsini, R.P., Valarmathi, M.L., Sivakumari, S. 2011. Gain Ratio Based Feature Selection Method For Privacy Preservation. ICTACT Journal On Soft Computing, Vol. 01, Issue. 04, pp 201-205. [Google Scholar]
  12. Yang H.C., Zhang S.B., Deng K.Z., DU P.J. 2007. Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM. Journal of China University of Mining & Technology, Vol. 17, Issue 4, pp. 473–478. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.