Open Access
Issue
MATEC Web of Conferences
Volume 57, 2016
4th International Conference on Advancements in Engineering & Technology (ICAET-2016)
Article Number 01029
Number of page(s) 6
Section Electronic & Electrical Engineering
DOI https://doi.org/10.1051/matecconf/20165701029
Published online 11 May 2016
  1. http://mnre.gov.in/file-manager/annual-report/2014-2015/EN/Chapter%201/chapter_1.htm [Google Scholar]
  2. http://mnre.gov.in/file-manager/annual-report/2014-2015/EN/Chapter%201/chapter_1.htm [Google Scholar]
  3. http://mnre.gov.in/file-manager/annual-report/2014-2015/EN/Chapter%201/chapter_1.htm [Google Scholar]
  4. Souvik Ganguli, Jasvir Singh, Etspg, International Journal Of Applied Engineering Research, Dindigul , Volume 1, No.2, 255 (2010) [Google Scholar]
  5. H. Hippert, C. Pedreira, and R. Souza, “Neural networks for short-term load forecasting: A review and evaluation,” IEEE Trans. Power Syst., vol. 16, no. 1, pp. 44 – 55, (2001) [Google Scholar]
  6. S. J. Huang and K. R. Shih, “Short-term load forecasting via ARMA model identification including non Gaussian process considerations,” IEEE Trans. Power Syst, vol. 18, no. 2, pp. 673–679, (2003) [CrossRef] [Google Scholar]
  7. J. W. Taylor, “Short-term load electricity demand forecasting using double seasonal exponential smoothing,” Journal of the Operational Research Society, vol. 54, pp. 799–805, (2003) [Google Scholar]
  8. M. S. Kandil, S. M. El-Debeiky, and N. E. Hasanien, “Long-term load forecasting for fast developing utility using a knowledge-based expert system,” IEEE Trans. Power System, vol. 17, no. 2, pp. 491 – 496 (2002) [CrossRef] [Google Scholar]
  9. K. B. Song, Y. S. Baek, D. H. Hong, and G. Jang, “Short-term load forecasting for the holidays using fuzzy linear regression method,” IEEE Trans. Power System, vol. 20, no. 1, pp. 96–101, (2005) [CrossRef] [Google Scholar]
  10. S. Fan and L. Chen, “Short-term load forecasting based on an adaptive hybrid method,” IEEE Trans. Power System, vol. 21, no. 1, pp. 392–401, (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.