Open Access
MATEC Web of Conferences
Volume 57, 2016
4th International Conference on Advancements in Engineering & Technology (ICAET-2016)
Article Number 01003
Number of page(s) 5
Section Electronic & Electrical Engineering
Published online 11 May 2016
  1. S.L. Horowitz, T. Pavlidis, Picture segmentation by a tree traversal algorithm, Journal of the Association for Computing Machinery, 23, 368-388 (1976) [CrossRef] [Google Scholar]
  2. R. Hunki, L. HaengSuk, A Noble Image Segmentation using Local Area Splitting and Merging Method based on Intensity Change, International Journal of Software Engineering and its Applications, 7, 99-112 (2013) [CrossRef] [Google Scholar]
  3. X. Wu, Adaptive Split-and-Merge Segmentation Based on Piecewise Least-Square Approximation, IEEE Transaction on Pattern Analysis and Machine Intelligence, 15, 808-815 (1993) [CrossRef] [Google Scholar]
  4. A.B.M. Faruquzzaman, N.R. Paiker, J. Arafat, M.A. Ali, G. Sorwar, Literature on Image Segmentations Based on Split- and- Merge Techniques, International Conference on Information Technology and Applications, pp. 120-125. Cairns, Australia (2008). [Google Scholar]
  5. H.S. Yang, S.U. Lee, Split and Merge Segmentation Employing Thresholding Technique, IEEE International Conference on Image Processing, pp. 239-242. Santa Barbara (1997) [Google Scholar]
  6. S. Annadurai, R. Shanmugalakshmi, Fundamentals of Digital Image Processing, Pearson Education, India (2007) [Google Scholar]
  7. R.C. Gonzalez, R.E. Woods, Digital Image Processing. Pearson Education, India (2009) [Google Scholar]
  8. R. Yogamangalam, B. Karthikeyan, Segmentation Techniques Comparison in Image Processing, International Journal of Engineering and Technology, 5, 307-311 (2013) [Google Scholar]
  9. P. Thakare, A Study of Image Segmentation and Edge Detection Techniques, International Journal of Computer Science and Engineering, 3, 899-904 (2011) [Google Scholar]
  10. D. Kelkar, S. Gupta, Improved Quadtree Method for Split Merge Image Segmentation, IEEE International Conference on Emerging Trends in Engineering and Technology, pp. 44-47. Nagpur, Maharashtra (2008) [Google Scholar]
  11. R. Kandwal, A. Kumar, S. Bhargava, Review: Existing Image Segmentation Techniques, International Journal of Advanced Research in Computer Science and Software Engineering, 4, 153-156 (2014) [Google Scholar]
  12. B. Peng, L. Zhang, D. Zhang, Automatic Image Segmentation by Dynamic Region Merging, IEEE Transaction on Image Processing, 20, 3592-3605 (2011) [CrossRef] [Google Scholar]
  13. K. Khoshelham, Z. Li, B. King, A Split-and-Merge Technique for Automated Reconstruction of Roof Planes, Photogrammetric Engineering & Remote Sensing Journal, 71, 855-862 (2005) [CrossRef] [Google Scholar]
  14. A.B.M. Faruquzzaman, N.R. Paiker, J. Arafat, Z. Karim, M.A. Ali, Object Segmentation Based on Split and Merge Algorithm, IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1-4. Toulouse, France (2006) [Google Scholar]
  15. S.M. Ramesh, B. Gomathy, T.V.P. Sundararajan, Detection of Defects on Steel Surface for Using Image Segmentation Techniques, International Journal of Signal Processing, Image Processing and Pattern Recognition, 7, 323-332 (2014) [CrossRef] [Google Scholar]
  16. P.L. Palmer, H. Dabis, J. Kittler, A performance measure for boundary detection algorithms, Elsevier Computer Vision Image Understanding, 63, 476–494 (1996) [CrossRef] [Google Scholar]
  17. M. Sharma, V. Chouhan, Objective Evaluation Parameters of Image Segmentation Algorithms, International Journal of Engineering and Advanced Technology, 2, 84-87 (2012) [Google Scholar]
  18. H. Zhang, J.E. Fritts, S.A. Goldman, Image segmentation evaluation: A survey of unsupervised methods, Science Direct Computer Vision and Image Understanding, 110, 260-280 (2008) [CrossRef] [Google Scholar]
  19. J. Canny, A Computational Approach to Edge Detection, IEEE Transaction on Pattern Analysis and Machine Intelligence, 8, 679 – 698 (1986) [CrossRef] [Google Scholar]
  20. J.S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Transaction on Pattern Analysis and Machine Intelligence, 2, (1980) [Google Scholar]
  21. A.V. Lugt, Signal detection by complex spatial filtering, IEEE Transactions on Information Theory, 10, 139 – 145 (1964) [CrossRef] [Google Scholar]
  22. C.M. Pun, N.Y. An, M. Cheng, A Region-Based Image segmentation by Watershed Partition and DCT Energy Compaction, IEEE International Conference on Computer Graphics, pp. 131-135. China (2011) [Google Scholar]
  23. Y.J. Zhang, A survey on evaluation methods for image segmentation, Elsevier Journal on Pattern Recognition, 29, 1335-1346 (1999) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.