Open Access
Issue |
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
|
|
---|---|---|
Article Number | 07001 | |
Number of page(s) | 5 | |
Section | Machine vision and robot | |
DOI | https://doi.org/10.1051/matecconf/20165607001 | |
Published online | 26 April 2016 |
- M. Hallett, ‘Transcranial magnetic stimulation: A primer’, Neuron, 55, (2), pp.187–199. (2007) [CrossRef] [Google Scholar]
- L. Matthäus, A. Giese, D. Wertheimer, and A. Schweikard, ‘Planning and analyzing robotized TMS using virtual reality’, Studies in health technology and informatics, 119, pp. 373–378. (2006) [Google Scholar]
- L. Matthäus, P. Trillenberg, and BodensteinerC., ‘Robotized TMS for motion compensated navigated brain stimulation’, International Journal of Computer Assisted Radiology and Surgery, 1, ( SUPPL. 7), pp.139–141. (2006) [Google Scholar]
- M. Finke, T. Fadini, S. Kantelhardt, A. Giese, L. Matthaus, and A. Schweikard, ‘Brain-Mapping using robotized TMS’, International Conference of the IEEE Engineering in Medicine and Biology Society. Vancouver, CANADA, Aug 20-24. pp. 3929–3932. (2008) [Google Scholar]
- J. Lancaster, S. Narayana, D. Wenzel, J. Luckemeyer, J. Roby, and P. Fox. ‘Evaluation of an image-guided, robotically positioned transcranial magnetic stimulation system’, Human Brain Mapping, 22, (4), pp.329–340. (2004) [CrossRef] [Google Scholar]
- C. Lebosse, P. Renaud, B. Bayle, M. De Mathelin, O. Piccin, and J Foucher, ‘A robotic system for automated image-guided Transcranial Magnetic Stimulation’, IEEE/NIH Life Science Systems and Applications Workshop, LISA. Bethesda, MD, pp.55–58. (2008) [Google Scholar]
- B. Hannaford, W.S. Kim, S.H. Lee, and L. Stark, ‘Neurological control of head movements: Inverse modeling and electromyographic evidence’, Mathematical Biosciences, 78, (2), pp.159–178. (1986) [CrossRef] [Google Scholar]
- L. Ferman, H. Collewijn, T.C Jansen, and A. V. Van den Berg, ‘Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional scleral induction coil technique’, Vision Research, 27, (5), pp.811–828. (1987) [CrossRef] [Google Scholar]
- J. Winters, ‘Biomechanical Modeling of the Human Head and Neck’, in F.J. Richmond, B. W. P. a. (ed), Control of Head Movement. Oxford University Press. (1988) [Google Scholar]
- A. Hagemann, K. Rohr, H.S. Stiehl, U. Spetzger, and J.M. Gilsbach, ‘Biomechanical modeling of the human head for physically based, nonrigid image registration’, Medical Imaging, IEEE Transactions on, 18, (10), pp.875–884. (1999) [CrossRef] [Google Scholar]
- S. T. Moore, E. Hirasaki, T. Raphan, and B. Cohen, ‘Instantaneous rotation axes during active head movements’, Journal of Vestibular Research, 15, (2), pp.73–80. (2005) [Google Scholar]
- B. W. Peterson, and F. J. Richmond, ‘Control of head movement’. Oxford University Press, USA. (1988) [Google Scholar]
- R. Plamondon, ‘A kinematic theory of rapid human movements-Part I. Movement representation and generation’, Biological Cybernetics, 72, (4), pp. 295–307. (1995) [CrossRef] [Google Scholar]
- R. Plamondon, C. Feng, and A. Woch, ‘A kinematic theory of rapid human movement. Part IV: A formal mathematical proof and new insights’, Biological Cybernetics, 89, (2), pp. 126–138. (2003) [CrossRef] [Google Scholar]
- J. T. Cavanaugh, D. Goldvasser, C. A. McGibbon, and D. E. Krebs, ‘Comparison of head- and bodyvelocity trajectories during locomotion among healthy and vestibulopathic subjects’, Journal of Rehabilitation Research and Development, 42, (2), pp.191–198. (2005) [CrossRef] [Google Scholar]
- R. O. Duda, C. Avendano, and V.R. Algazi, ‘An adaptable ellipsoidal head model for the interaural time difference’, IEEE International Conference on Acoustics, Speech, and Signal Processing, 15-19 Mar 1999. pp. 965–968 vol.2. (1999) [Google Scholar]
- P. Stephen, ‘Bodyspace: anthropometry, ergonomics, and the design of work’. Taylor & Francis. (1996) [Google Scholar]
- R. Chan, D. K. Rogers, and D. I. McCloskey, ‘Postural stability of the head in response to slowly imposed, small elastic loads’, Neuroscience Letters, 214, (2–3), pp.205–207. (1996) [CrossRef] [Google Scholar]
- J. De Schutter, ‘A study of active compliant motion control methods for rigid manipulators based on a generic scheme’,Robotics and Automation. Proceedings. 1987 IEEE International Conference on. Mar 1987. pp. 1060–1065. (1987) [Google Scholar]
- J. De Schutter, and H. Van Brussel, ‘Compliant Robot Motion I. A Formalism for specifying compliant motion tasks’, International Journal of Robotics Research, 7, (4), pp. 3–17. (1988) [CrossRef] [Google Scholar]
- J. De Schutter, and H. Van Brussel, ‘Compliant Robot Motion II. A Control Approach Based On External Control Loops’, International Journal of Robotics Research, 7, (4), pp. 18–33. (1988) [CrossRef] [Google Scholar]
- E. Degoulange, and P. Dauchez, ‘External force control of an industrial PUMA 560 robot’, Journal of Robotic Systems, 11, (6), pp.523–540. (1994) [CrossRef] [Google Scholar]
- J. S. R. Jang, ‘ANFIS: adaptive-network-based fuzzy inference system’,IEEE Transactions on Systems, Man and Cybernetics , 23, (3), pp.665–685. (1993) [Google Scholar]
- J. S. R. Jang, and C. T. Sun, ‘Neuro-fuzzy modeling and control’, Proceedings of the IEEE, 83, (3), pp.378–406. (1995) [Google Scholar]
- J. S. R. Jang, and C. T. Sun, and E. Mizutani, Neurofuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall. (1997) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.