Issue |
MATEC Web Conf.
Volume 95, 2017
2016 the 3rd International Conference on Mechatronics and Mechanical Engineering (ICMME 2016)
|
|
---|---|---|
Article Number | 05003 | |
Number of page(s) | 5 | |
Section | Mechanical Processing Technology | |
DOI | https://doi.org/10.1051/matecconf/20179505003 | |
Published online | 09 February 2017 |
Rapid Modelling and Grinding of Workpieces’ Inner-surface by Robot with Impedance Model Based Fuzzy Force Control Algorithm
School of Mechanical Engineering & Automation, Northeastern University, 110819, Shenyang, China
To achieve rapid automatic grinding of workpieces’ inner-surface by industrial robot, a rapid translational detection strategy of workpieces’ inner-surface and fuzzy force control algorithm of grinding are proposed in this paper. The rapid translational detection strategy introduces a way to establish an inner-surface’s model quickly by recording key points of the axial section contour which reflects big curvature changes of the contour. The established model is feasible but imprecision. The force control algorithm is based on impedance model. To promote adaptability to the imprecision of the established inner-surface’s model, a fuzzy adjusting strategy is introduced in the force control algorithm. By adopting an adjusting factor, which determined by force response and a fuzzy logic, the strategy can adjust the reference trajectory of impedance model in time. Taking advantage of proposed detection and force control method, grinding experiments shows that the contact normal force maintains approximately constant, the relative mean error is within 6.5%, and the material removal thickness of the inner-surface is approximately consistent. The proposed strategy’s feasibility is verified.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.