Open Access
Issue
MATEC Web of Conferences
Volume 40, 2016
2015 International Conference on Mechanical Engineering and Electrical Systems (ICMES 2015)
Article Number 05010
Number of page(s) 6
Section Thermal theory and application
DOI https://doi.org/10.1051/matecconf/20164005010
Published online 29 January 2016
  1. LiW D, LiM, Li W F et al (2010) Study on the ash fusion temperatures of coal and sewage sludge mixtures. Fuel 89:1566–1572. [CrossRef] [Google Scholar]
  2. LiJ B, ShenB X, Li H X et al (2009) Effect of coal blending on the ash fusion temperature and the prediction model for the ash fusion temperature. Clean Coal Technology 15:66–70. [Google Scholar]
  3. GaoH G, Li B Y (2001) Mathematical model and its solution for steam coal blending. Journal of China University of Mining & Technology 30:627–629. [Google Scholar]
  4. MaZH H, ZhaoZH G, Huang W H (2010) Stepwise regression analysis of ash fusion in Rujigou Coalmine, Ningxia. Coal Geology of China 22:7–9. [Google Scholar]
  5. SunQ Y, ZhuX D, TangL H, et al (2005) Analysis of coal ash fusion temperature using polynomial partial regression functions. Journal of East China University of Science and Technology 1:005. [Google Scholar]
  6. G. Özbayoğlu, M. Evren Özbayoğlu (2006) A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites. Fuel 85:545–552. [CrossRef] [Google Scholar]
  7. YinCH G, LuoZ Y, NiM J, et al (2006) Predicting coal ash fusion temperature with a back-propagation neural network model. Fuel 77:1777–1782. [Google Scholar]
  8. LiJ ZH, ZhouH, WangCH L, et al (2007) Employing support vector machine to predict the ash fusion temperature of coal blends. Journal of China Coal Society 32:81–84 [Google Scholar]
  9. WangCH L, ZhouH, LiG N, et al (2007) Combining support vector machine and genetic algorithm to predict ash fusion temperature. Proceedings of the CSEE 27:11–15. [Google Scholar]
  10. LiuY P, ZhongY F, QianJ X, et al (2003) Application of ant colony algorithm and BP neural network in prediction of coal ash fusion point. Thermal Power Generation 36:23–26 [Google Scholar]
  11. Jiang Q Y (2002) Haitong advanced control configuration software (XD-APC) v2002, 019005[p]. Xiamen University Haitong Control co., LTD [Google Scholar]
  12. M Seggiani (1999) Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel 78:1121–1125. [CrossRef] [Google Scholar]
  13. Wang H, He X G (2001) Study of improving generalization of BP network. Systems Engineering and Electronics 23:85–87. [Google Scholar]
  14. Li Q Y, Zhou H, Lin A P, et al (2001) Prediction of ash fusion temperature based on grid search and support vector machine. Journal of Zhejiang University 45:2181–2187. [Google Scholar]
  15. Li Y (2002) Modeling of power coal blending with application of some non-linear theories. Zhejiang University, Hangzhou. [Google Scholar]
  16. Liu X B, Chen CH (1995) Research on ash fusion temperature. Coal Chemical Industry 2:48–52 [Google Scholar]
  17. Wen X Q, Xu ZH M, Sun L F, et al (2001) Modeling and prediction of the softening temperature of coal ash. Journal of China Coal Society 36:861–866. [Google Scholar]
  18. Liu T X, Zhang J Y, Zhang Z X (1992) A new method for the detection of coal and power coal blending 10:177. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.