Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 03003
Number of page(s) 7
Section Materials
Published online 11 January 2016
  1. Zhang, Z., Chen, A., Matveev, A., Nilssen, R., & Nysveen, A. (2013). High-power generators for offshore wind turbines. Energy Procedia, 35, 52–61. [CrossRef] [Google Scholar]
  2. Mahmoudi, A., Kahourzade, S., Rahim, N. A., Ping, H. W., & Uddin, M. N. (2013). Design and prototyping of an optimized axial-flux permanent-magnet synchronous machine. IET Electric Power Applications, 7(5), 338–349. [CrossRef] [Google Scholar]
  3. Gieras, J. F., Wang, R. J., & Kamper, M. J. (2008). Axial flux permanent magnet brushless machines (Vol. 1). New York, NY: Springer. [CrossRef] [Google Scholar]
  4. Mahmoudi, A., Rahim, N. A., & Hew, W. P. (2011). Axial-flux permanent-magnet machine modeling, design, simulation, and analysis. Scientific Research and Essays, 6(12), 2525–2549. [Google Scholar]
  5. Ahmed, D. and Ahmad, A. (2013). An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine. Journal of Physics: Conference Series 439 (2013)012039 [CrossRef] [Google Scholar]
  6. Li, H., & Chen, Z. (2008). Overview of different wind generator systems and their comparisons. IET Renewable Power Generation, 2(2), 123–138. [Google Scholar]
  7. Wang, R. J., Kamper, M. J., Van der Westhuizen, K., & Gieras, J. F. (2005). Optimal design of a coreless stator axial flux permanent-magnet generator. Magnetics, IEEE Transactions on, 41(1), 55–64. [CrossRef] [Google Scholar]
  8. Fitzgerald, A. E., & Kingsley, C. (1961). Electric machinery: the dynamics and statics of electromechanical energy conversion. McGraw-Hill [Google Scholar]
  9. Virtic, P., Pisek, P., Marcic, T., Hadziselimovic, M., & Stumberger, B. (2008). Analytical analysis of magnetic field and back electromotive force calculation of an axial-flux permanent magnet synchronous generator with coreless stator. Magnetics, IEEE Transactions on, 44(11), 4333–4336. [CrossRef] [Google Scholar]
  10. Hwang, C. C., Li, P. L., Chuang, F. C., Liu, C. T., & Huang, K. H. (2009). Optimization for reduction of torque ripple in an axial flux permanent magnet machine. Magnetics, IEEE Transactions on, 45(3), 1760–1763. [CrossRef] [Google Scholar]
  11. Zhang, S., Tseng, K. J., Vilathgamuwa, D. M., Nguyen, T. D., & Wang, X. Y. (2011). Design of a robust grid interface system for PMSG-based wind turbine generators. Industrial Electronics, IEEE Transactions on, 58(1), 316–328. [CrossRef] [Google Scholar]
  12. Reggiani, U., Grandi, G., Sancineto, G., Serra, G. (2000). Comparison Between Air-Core and Laminated Iron-Core Inductors in Filtering Applications for Switching Converters. IEEE-CIEP Conference, Acapulco, (MEX), October 15-19, 2000 [Google Scholar]
  13. Mirzaei, M., Mirsalim, M., & Abdollahi, S. E. (2007). Analytical modeling of axial air gap solid rotor induction machines using a quasi-three-dimensional method. Magnetics, IEEE Transactions on, 43(7), 3237–3242. [CrossRef] [Google Scholar]
  14. Del Ferraro, L., Giulii Capponi, F., Terrigi, R., Caricchi, F., & Honorati, O. (2006, October). Ironless axial flux PM machine with active mechanical flux weakening for automotive applications. In Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE (Vol. 1, pp. 1–7). IEEE. [Google Scholar]
  15. Lombard, N. F., & Kamper, M. J. (1999). Analysis and performance of an ironless stator axial flux PM machine. Energy Conversion, IEEE Transactions on, 14(4), 1051–1056. [CrossRef] [Google Scholar]
  16. Breton, C., Bartolome, J., Benito, J. A., Tassinario, G., Flotats, I., Lu, C. W., & Chalmers, B. J. (2000). Influence of machine symmetry on reduction of cogging torque in permanent-magnet brushless motors. Magnetics, IEEE Transactions on, 36(5), 3819–3823. [CrossRef] [Google Scholar]
  17. Chen, J. L., & Liu, T. H. (2012). Implementation of a predictive controller for a sensorless interior permanent-magnet synchronous motor drive system.Electric Power Applications, IET, 6(8), 513–525. [CrossRef] [Google Scholar]
  18. Hosseini, S. M., Agha-Mirsalim, M. & Mirzaei, M. (2008). Design, Prototyping, and Analysis of a Low Cost Axial-Flux Coreless Permanent-Magnet Generator. IEEE Transaction on Magnetics, Vol. 44, No. 1, January 2008 [Google Scholar]
  19. Javadi, S., & Mirsalim, M. (2010). Design and analysis of 42-V coreless axial-flux permanent-magnet generators for automotive applications. Magnetics, IEEE Transactions on, 46(4), 1015–1023. [CrossRef] [Google Scholar]
  20. Kobayashi, H., Doi, Y., Miyata, K. and Minowa, T. (2009). Design of axial-flux permanent magnet coreless generator for the multi-megawatts wind turbines. EWEC2009. [Google Scholar]
  21. Bumby, J. R., & Martin, R. (2005). Axial-flux permanent-magnet air-cored generator for small-scale wind turbines. IEE Proceedings-Electric Power Applications, 152(5), 1065–1075. [CrossRef] [Google Scholar]
  22. Mo, W., Zhang, L., Shan, A., Cao, L., Wu, J., & Komuro, M. (2008). Improvement of magnetic properties and corrosion resistance of NdFeB magnets by intergranular addition of MgO. Journal of Alloys and Compounds,461(1), 351–354. [CrossRef] [Google Scholar]
  23. Chan, T. F., & Lai, L. L. (2007). An axial-flux permanent-magnet synchronous generator for a direct-coupled wind-turbine system. Energy Conversion, IEEE Transactions on, 22(1), 86–94. [Google Scholar]
  24. K& Magnetics Inc. Temperature and Neodymium Magnet. Retrieved from [Google Scholar]
  25. Drazikowski, L., & Koczara, W. (2011). Permanent magnet disk generator with coreless windings. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 31(1), 108–118. [CrossRef] [Google Scholar]
  26. JMAG, Simulation Technologies for Electromechanical Design. Retrieved from [Google Scholar]
  27. Jenal, M., Sulaiman, E., Ahmad, M. Z., Zakaria, S. N. U., Utomo, W. M., Zulkifli, S. A., & Bakar, A. A. (2013, November). Design study of single and three-phase synchronous generator using J-MAG designer. In Clean Energy and Technology (CEAT), 2013 IEEE Conference on (pp. 226–231). IEEE. [Google Scholar]
  28. [Google Scholar]
  29. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.