Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 01004
Number of page(s) 7
Section Thermal Engineering & Energy Conversion
Published online 11 January 2016
  1. S. Crampin and S. Peacock, “A review of shearwave splitting in the compliant crack-critical anisotropic Earth,” Wave Motion, 41, 59–77, (2005). [CrossRef] [Google Scholar]
  2. R. Bale, B. Gratacos, B. Mattocks, S. Roche, K. Poplavskii, and X. Li, “Shear wave splitting applications for fracture analysis and improved imaging: Some onshore examples,” first break, 27, (2009). [Google Scholar]
  3. S. Crampin and S. Peacock, “A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation,” Wave motion, 45, 675–722, (2008). [CrossRef] [Google Scholar]
  4. C. M. Keith and S. Crampin, “Seismic body waves in anisotropic media: reflection and refraction at a plane interface,” Geophys. J. Int, 49, 181–208, (1977). [CrossRef] [Google Scholar]
  5. M. Ando, Y. Ishikawa, and F. Yamazaki, “Shear wave polarization anisotropy in the upper mantle beneath Honshu, Japan,” J. Geophys. Res: Solid Earth (1978–2012), 88, 5850–5864, (1983). [Google Scholar]
  6. L. Vinnik, J. P. Montagner, N. Girardin, I. Dricker, and J. Saul, “Comment on “Shear‐wave splitting to test mantle deformation models around Hawaii” by Kristoffer T. Walker, Götz HR Bokelmann, and Simon L. Klemperer,” Geophys. Res. Lett, 30, (2003). [CrossRef] [Google Scholar]
  7. Y. Fukao, “Evidence from core-reflected shear waves for anisotropy in the Earth’s mantle,” (1984). [Google Scholar]
  8. P. G. Silver and W. W. Chan, “Implications for continental structure and evolution from seismic anisotropy,” (1988). [Google Scholar]
  9. S. Crampin and Y. Gao, “A review of techniques for measuring shear-wave splitting above small earthquakes,” Phys. Earth. Planet. In, 159, 1–14, (2006). [CrossRef] [Google Scholar]
  10. S. Crampin and D. W. King, “Evidence for anisotropy in the upper mantle beneath Eurasia from the polarization of higher mode seismic surface waves,” Geophys. J. Int, 49, 59–85, (1977). [CrossRef] [Google Scholar]
  11. M. Ando, Y. Ishikawa, and H. Wada, “S-wave anisotropy in the upper mantle under a volcanic area in Japan,” (1980). [Google Scholar]
  12. P. Bernard and A. Zollo, “Inversion of near-source S polarization for parameters of double-couple point sources,” B. Seismol. Soc. Am, 79, 1779–1809, (1989). [Google Scholar]
  13. J. E. Vidale, “Complex polarization analysis of particle motion,” B. Seismol. Soc. Am, 76, 1393–1405, (1986). [Google Scholar]
  14. Y. Gao, P. Hao, and S. Crampin, “SWAS: A shear-wave analysis system for semi-automatic measurement of shear-wave splitting above small earthquakes,” Phys. Earth. Planet. In, 159, 71–89, (2006). [CrossRef] [Google Scholar]
  15. X. R. Shih, R. P. Meyer, and J. F. Schneider, “An automated, analytical method to determine shear-wave splitting,” Tectonophysics, 165, 271–278, (1989). [CrossRef] [Google Scholar]
  16. R. C. Aster, P. M. Shearer, and J. Berger, “Quantitative measurements of shear wave polarizations at the Anza seismic network, southern California: Implications for shear wave splitting and earthquake prediction,” J. Geophys. Res: Solid Earth (1978–2012), 95, 12449–12473, (1990). [Google Scholar]
  17. P. G. Silver and W. W. Chan, “Shear wave splitting and subcontinental mantle deformation,” J. Geophys. Res: Solid Earth (1978–2012), 96, 16429–16454, (1991). [Google Scholar]
  18. N. Teanby, J.-M. Kendall, and M. Van der Baan, “Automation of shear-wave splitting measurements using cluster analysis,” B. Seismol. Soc. Am, 94, 453–463, (2004). [CrossRef] [Google Scholar]
  19. C.-F. Shieh, “Estimation of shear-wave splitting time using orthogonal transformation,” Geophysics, 62, 657–661, (1997). [CrossRef] [Google Scholar]
  20. H. Dai and C. MacBeth, “Split shear-wave analysis using an artificial neural network,” First Break, vol. 12, 605–613, 1994. [Google Scholar]
  21. F. Colonna, G. Easley, K. Guo, and D. Labate, “Radon transform inversion using the shearlet representation,” Acha, 29, 232–250, Sep (2010). [Google Scholar]
  22. S. R. Deans, The Radon transform and some of its applications: Courier Corporation, (2007). [Google Scholar]
  23. Y. J. Gu and M. Sacchi, “Radon transform methods and their applications in mapping mantle reflectivity structure,” Surv. Geophys, 30, 327–354, (2009). [CrossRef] [Google Scholar]
  24. Y. Luo, J. Xia, R. D. Miller, Y. Xu, J. Liu, and Q. Liu, “Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform,” Pure. Appl. Geophys, 165, 903–922, May (2008). [CrossRef] [Google Scholar]
  25. C. Cosma, Vertical and Horizontal Seismic Profiling Investigations at Olkiluoto, 2001: Posiva, (2003). [Google Scholar]
  26. J. Blackburn, J. Daniels, S. Dingwall, G. Hampden-Smith, S. Leaney, J. Le Calvez, et al., “Borehole Seismic Surveys: Beyond the Vertical Profile,” Journal Oil Field Review, Schlumberger, 15, 15, (2007). [Google Scholar]
  27. M. Nejati and H. Hashemi, “Migrated Exploding Reflectors in Evaluation of Finite Difference Solution for Inhomogeneous Seismic Models,” (2012). [Google Scholar]
  28. C. Sayers and S. Chopra, “Introduction to this special section: Seismic modeling,” The Leading Edge, 28, 528–529, (2009). [CrossRef] [Google Scholar]
  29. Z. Yao and G. F. Margrave, “Elastic wavefield modelling in 3D by fourth-order staggered-grid finite difference technique.” [Google Scholar]
  30. R. Clayton and B. Engquist, “Absorbing boundary conditions for acoustic and elastic wave equations,” B. Seismol. Soc. Am, 67, 1529–1540, (1977). [Google Scholar]
  31. F. Collino and C. Tsogka, “Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media,” Geophysics, vol. 66, pp. 294–307, January 1, 2001 2001. [Google Scholar]
  32. B. Engquist and A. Majda (1979). Absorbing boundary conditions for the numerical solution of waves, Math. Comp. (in press). [Google Scholar]
  33. Z. Cao, “Analysis and application of the Radon transform,” in Masters Abstracts International, (2007). [Google Scholar]
  34. R. H. Stolt and A. B. Weglein., Seismic Imaging and Inversion: Cambridge University Press, (2012). [Google Scholar]
  35. A. Gholamy and V. Kreinovich, “Why Ricker wavelets are successful in processing seismic data: Towards a theoretical explanation,” in CIES, 2014, IEEE Symposium on, 11–16 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.