Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 01002
Number of page(s) 9
Section Thermal Engineering & Energy Conversion
Published online 11 January 2016
  1. Ghazikhani, M., Passandideh-Fard, M. and Mousavi, M., Two new high-performance cycles for gas turbine with air bottoming. Energy, 2011, 36(1), 294–304. [Google Scholar]
  2. Avval, H. B., Ahmadi, P., Ghaffarizadeh, A. R. and Saidi, M. H., Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm. International Journal of Energy Research, 2011, 35(5), 389–403. [Google Scholar]
  3. Dries, V. and Carlos, B., Impact of heat transfer on the performance of micro gas turbines. Applied Energy, 2015, 138, 445–449 [CrossRef] [Google Scholar]
  4. Tarek, N., Performance characterization of different configurations of gas turbine engines. Propulsion and Power Research, 2013, 3(3), 121–132. [Google Scholar]
  5. Ameri, M., Hejazi, S. H. and Montaser, K., Performance and economic of the thermal energy storage systems to enhance the peaking capacity of the gas turbines. Applied Thermal Engineering, 2005, 25(2-3), 241–251. [CrossRef] [Google Scholar]
  6. Rahman, M. M., Thamir, K. Ibrahim. Kadirgama, K., Mamat, R., Bakar, R. A., Influence of operation conditions and ambient temperature on performance of gas turbine power plant, Adv. Mater. Res., 2011, 189–193, 3007–3013. [CrossRef] [Google Scholar]
  7. Rahman, M. M., Ibrahim, T. K., Abdalla, A. N., Thermodynamic performance analysis of gas-turbine power-plant. International Journal of the Physical Sciences, 2011, 6(14), 3539–3550. [Google Scholar]
  8. Najjar, Y. S. H., Comparison of performance for cogeneration systems using single- or twin-shaft gas turbine engines. Applied Thermal Engineering, 1997, 17(2), 113–124. [CrossRef] [Google Scholar]
  9. Ibrahim, Thamir K. and Rahman, M. M., (2014). Effective Parameters on Performance of Multipressure Combined Cycle Power Plants. Advances in Mechanical Engineering Volume 2014, Article ID 781503, 14 pages. [Google Scholar]
  10. Erdem, H.H. and Sevilgen, S.H.. Case study: Effect of ambient temperature on the electricity production and fuel consumption of a simple cycle gas turbine in Turkey. Applied Thermal Engineering, 2006, 26 (2–3), 320–326. [Google Scholar]
  11. Coogan, S., Brun, K. and Teraji, D., Micromix Combustor for High Temperature Hybrid Gas Turbine Concentrated Solar Power Systems. Energy Procedia, 2014, 49, 1298–1307. [CrossRef] [Google Scholar]
  12. Hongguang, J., Hui, H. and Ruixian, C., A chemically intercooled gas turbine cycle for recovery of low-temperature thermal energy. Energy, 2006, 31(10-11), 1554–1566. [CrossRef] [Google Scholar]
  13. Ibrahim, Thamir K. and Rahman, M.M., Effect of the Compression Ratio on the performance of different strategies of the Gas Turbine. International Journal of Automotive and Mechanical Engineering, 2014A, 9, 1747–1757. [Google Scholar]
  14. Cengel, Y. A. and Michael, A. Thermodynamics an engineering approach, McGraw-Hill Science/Engineering/Math; 8 edition, New York 2015. [Google Scholar]
  15. Dellenback, P. A., Improved gas turbine efficiency through alternative regenerator configuration. ASME, Journal of Engineering for Gas Turbines and Power, 2002, 124(6), 441–446. [CrossRef] [Google Scholar]
  16. Kurt, H., Recebli, Z. and Gedik, E., Performance analysis of open cycle gas turbines. International Journal of Energy Research, 2009, 33(3), 285–294. [Google Scholar]
  17. Ibrahim, Thamir K., Rahman, M. M., Abdalla, A. N., Study on the effective parameter of gas turbine model with intercooled compression process. Scientific Research and Essays, 2010, 5(23), 3760–3770. [Google Scholar]
  18. Bassily, A.M., Performance improvements of the intercooled reheat regenerative gas turbine cycles using indirect evaporative cooling of the inlet air and evaporative cooling of the compressor discharge. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2001, 215(5), 545-557. [CrossRef] [Google Scholar]
  19. Bassily, A. M., Performance improvements of the intercooled reheat recuperated gas-turbine cycle using absorption inlet-cooling and evaporative after-cooling. Applied Energy, 2004, 77(3), 249–272. [CrossRef] [Google Scholar]
  20. Ilett, T. and Lawn., C.J., Thermodynamic and economic analysis of advanced and externally fired gas turbine cycles. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2010, 224(7), 901-915. [CrossRef] [Google Scholar]
  21. Mahmood, F. G. and Mahdi, D. D., New, A Approach for Enhancing Performance Of A Gas Turbine (Case Study: Khangiran Refinery). Applied Energy, 2009, 86(12), 2750–2759. [CrossRef] [Google Scholar]
  22. Rahman, M. M., Thamir, K. Ibrahim, Taib, M. Y., Noor, M. M., Kadirgama, K. and Rosli, A. Bakar, Thermal analysis of open-cycle regenerator gas-turbine power-plants, World Academy of Science, Engineering and Technology Journal, 2010, 68, 94–99. [Google Scholar]
  23. Basha, M., Shaahid, S. M. and Al-Hadhrami, L., Impact of Fuels on Performance and Efficiency of Gas Turbine Power Plants. Energy Procedia, 2012, 14, 558–565. [CrossRef] [Google Scholar]
  24. Thamir K. Ibrahim, Rahman, M. M., Abdalla, A. N., Optimum Gas Turbine Configuration for Improving the Performance of Combined Cycle Power Plant, Procedia Engineering, 2011, 15, 4216–4223. [Google Scholar]
  25. Chandraa, H., Aroraa, A., Kaushik, S.C., Tripathi, A. and Rai, A., Thermodynamic analysis and parametric study of an intercooled–reheat closed-cycle gas turbine on the basis of a new isentropic exponent. International Journal of Sustainable Energy, 2011, 30(2), 82–97. [CrossRef] [Google Scholar]
  26. Graus, W. and Worrel, E.. 2009 Trend in efficiency and capacity of fossil fuel power generation in the EU. Energy Policy, 37(9): 2147–2160. [CrossRef] [Google Scholar]
  27. Nishida, K., Takagi, T. and Kinoshita, S., Regenerative steam-injection gas-turbine systems. Applied Energy, 2005, 81(3), 231–246. [Google Scholar]
  28. Thamir K. Ibrahim, and Rahman M.M., Effect of the isentropic efficiency and enhancing strategies on the performance of gas turbine. Journal of Mechanical Engineering and Sciences, 2013, 4, 383–396. [CrossRef] [Google Scholar]
  29. Yang, W., Reduction of specific fuel consumption in gas turbine power plants. Energy Conversion and Management, 1997, 38(10–13), 1219–1224. [CrossRef] [Google Scholar]
  30. De Sa, A. and Al Zubaidy, S., Gas turbine performance at varying ambient temperature. Applied Thermal Engineering, 2011, 31(14–15), 2735–2739. [CrossRef] [Google Scholar]
  31. Bannai, M., Houkabe, A., Furukawa, M., Kashiwagi, T., Akisawa, A., Yoshida, T. and Yamada, H., Development of efficiency-enhanced cogeneration system utilizing high-temperature exhaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases. Applied Energy, 2006, 83(9), 929–942. [CrossRef] [Google Scholar]
  32. Polyzakis, A. L., Koroneos, C. and Xydis, G., Optimum gas turbine cycle for combined cycle power plant. Energy Conversion Management, 2008, 49(4), 551–563. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.